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Abstract— Connected and autonomous vehicles (CAVs) have
great potential to improve road transportation systems. Most
existing strategies for CAVs’ longitudinal control focus on
downstream traffic conditions, but neglect the impact of CAVs’
behaviors on upstream traffic flow. In this paper, we introduce
a notion of Leading Cruise Control (LCC), in which the CAV
maintains car-following operations adapting to the states of its
preceding vehicles, and also aims to lead the motion of its
following vehicles. Specifically, by controlling the CAV, LCC
aims to attenuate downstream traffic perturbations and smooth
upstream traffic flow actively. We first present the dynamical
modeling of LCC, with a focus on three fundamental scenarios:
car-following, free-driving, and Connected Cruise Control. Then,
the analysis of controllability, observability, and head-to-tail
string stability reveals the feasibility and potential of LCC in
improving mixed traffic flow performance. Extensive numerical
studies validate that the capability of CAVs in dissipating traffic
perturbations is further strengthened when incorporating the
information of the vehicles behind into the CAVs’ control.

Index Terms— Connected and autonomous vehicle, cruise
control, mixed traffic flow, controllability, string stability.

I. INTRODUCTION

IMPROVING the driving behavior of individual vehicles
via vehicular automation provides new opportunities for

smooth traffic flow and efficient mobility [1]. One typical
technology is Adaptive Cruise Control (ACC), which adjusts
its own motion by monitoring the preceding vehicle ahead [2].

Manuscript received 12 January 2021; revised 23 July 2021; accepted
15 September 2021. Date of publication 13 October 2021; date of current
version 9 August 2022. This work was supported in part by the National Key
Research and Development Program of China under Grant 2018YFE0204302,
in part by the National Natural Science Foundation of China under Grant
52072212, in part by Tsinghua University-Didi Joint Research Center for
Future Mobility, China Intelligent and Connected Vehicles (Beijing) Research
Institute Company Ltd., and in part by Dongfeng Automobile Company
Ltd. The Associate Editor for this article was R. Malekian. (Corresponding
authors: Yang Zheng; Keqiang Li).

Jiawei Wang, Chaoyi Chen, Qing Xu, and Keqiang Li are with
the School of Vehicle and Mobility, Tsinghua University, Beijing
100084, China, and also with Tsinghua University-Didi Joint Research
Center for Future Mobility, Beijing 100084, China (e-mail: wang-jw18@
mails.tsinghua.edu.cn; chency19@mails.tsinghua.edu.cn; qingxu@tsinghua.
edu.cn; likq@tsinghua.edu.cn).

Yang Zheng is with the Department of Electrical and Computer Engineering,
University of California San Diego, La Jolla, CA 92093 USA (e-mail:
zhengy@eng.ucsd.edu).

Digital Object Identifier 10.1109/TITS.2021.3118021

High-accuracy on-board sensors and advanced control algo-
rithms enable ACC-equipped vehicles to achieve a better
car-following behavior than typical human drivers [3]. The
potential of ACC has been further enhanced thanks to the
emergence of connected and autonomous vehicles (CAVs) [4].
By exploiting wireless communication, e.g., vehicle-to-vehicle
(V2V) or vehicle-to-infrastructure (V2I), CAVs can utilize
other vehicles’ information within their communication range,
thereby allowing for more sophisticated driving strategies than
traditional ACC-equipped vehicles.

To coordinate multiple CAVs, Cooperative Adaptive Cruise
Control (CACC) is a prevailing extension of ACC [4], [5].
In CACC, a series of adjacent CAVs are organized into
a platoon, following a designated head vehicle. Fig. 1(a)
demonstrates a typical CACC framework under a special
communication topology, known as predecessor-leader follow-
ing (PLF), where each CAV utilizes the information of its
preceding vehicle and the head vehicle to determine its control
input. Besides PLF, the potential of other communication
topologies has also been explicitly investigated for improving
the performance of CACC [6]. Extensive theoretical analysis
and field experiments have revealed the capability of CACC
in mitigating traffic perturbations while maintaining a small
inter-vehicle distance, contributing to higher traffic capacity
and throughput [6]–[8].

Most CACC systems, especially in the platoon sense
[4], [5], typically assume all the involved vehicles to have
autonomous capabilities. Due to the long-period transition
from human-driven vehicles (HDVs) to CAVs, the near
future will have to meet mixed traffic scenarios with the
coexistence of HDVs and CAVs [9]–[11], in which HDVs
would still be the majority in traffic flow in the next few
decades. In addition, since CACC systems do not explic-
itly consider other HDVs’ dynamics into their controller
design, significant traffic performance improvement may be
achieved only if the penetration rate of CAVs reaches a certain
level [12], [13]. It is thus better to incorporate HDVs’ dynam-
ics for designing high-performance controllers. HDVs’ car-
following behavior has indeed been studied extensively since
the last fifties [14], and many models have been developed,
e.g., optimal velocity model (OVM) [15] and intelligent driver
model (IDM) [16]. These results facilitate the understanding
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Fig. 1. Schematic of different control frameworks for CAVs. The blue arrows represent the communication topology of the CAV, while the purple arrows
illustrate the interaction direction in HDVs’ dynamics. The blue vehicles, gray vehicles and yellow vehicles represent CAVs, HDVs and the head vehicle,
respectively. (a) In a CACC platoon, multiple CAVs are controlled to follow a designated head vehicle. Here, we demonstrate a typical communication
topology named predecessor-leader following (see [6] for other typical topologies). (b) CCC focuses on a mixed traffic scenario, where the CAV receives the
information from multiple HDVs ahead [17]. (c) In LCC, the CAV explicitly considers the dynamics of both the vehicles ahead and the vehicles behind.

of human’s driving behavior, which in turn contribute to the
extension of ACC/CACC to mixed traffic scenarios. The notion
of Connected Cruise Control (CCC) is a typical example [17],
which explicitly considers HDVs’ dynamics and determines
the CAV’s control strategy at the tail by monitoring the motion
of multiple HDVs ahead (Fig. 1(b)). Many recent studies have
revealed the potential of CCC in improving the performance of
mixed traffic, and various topics have been addressed, such as
scalability of the CCC framework [18], estimation of HDVs’
dynamics [19] and influence of communication delay [20].

A. Notion of Leading Cruise Control (LCC)

Similar to human drivers’ decision-making process [21],
CCC-type controllers monitor the downstream traffic condi-
tions consisting of the vehicles ahead and aim to achieve a
better car-following behavior [17]–[20], [22]. Due to the front-
to-rear reaction dynamics of human drivers, the behavior of
one individual vehicle has a simultaneous influence on the
upstream traffic flow containing its following vehicles behind.
One example of such impact from the negative side is the
phenomenon of traffic waves, where a small perturbation of
one vehicle persists and propagates upstream in a series of
HDVs. In particular, if the involved vehicles have a poor
string stability performance [9], [18], the perturbations will be
amplified and might grow into a stop-and-go pattern, bringing
a dramatic increase to travel time, fuel consumption and
accident risks [3]. The topic of enabling CAVs to dissipate per-
turbations from the front (i.e., downstream traffic) has gained
significant attention, but to our knowledge, the influence of
the perturbations on the upstream traffic flow behind the CAV
has not been clearly addressed. By explicitly incorporating the
motion of the vehicles behind into CAVs’ control, the potential
of CAVs in smoothing traffic flow could be further enhanced,
compared to traditional CAV strategies.

In this paper, we introduce a new notion of Leading Cruise
Control (LCC); see Fig. 1(c) for illustration. In the spirit
of ACC/CCC, an LCC-equipped vehicle retains car-following
operations that adapt to the motion of its preceding vehicles.

Meanwhile, LCC explicitly considers the impact of its own
behavior on the upstream traffic, i.e., those HDVs following
behind. Particularly, the LCC-equipped CAV acts as a leader
to actively lead the motion of its following vehicles and aims
to improve the performance of the entire upstream traffic flow.
A related concept is the notion of Lagrangian control of traffic
flow [9], [10], where CAVs are utilized as mobile actuators for
traffic control. Recent results have revealed the potential of one
single CAV in stabilizing a closed ring-road traffic system from
various aspects, including rigorous theoretical analysis [10],
[23]–[25], small-scale field experiments [9], and large-scale
numerical simulations [26], [27]. Since the impact of the
CAV’s behavior propagates backwards, i.e., upstream in traffic
flow, LCC generalizes these ring-road results and investigates
traffic control and optimization via CAVs at an open straight
road scenario. The possibility of controlling upstream traffic
flow via CAVs has also been recently investigated based
on macroscopic traffic models, by viewing CAVs as moving
bottlenecks in traffic flow [28], [29] or establishing a closed-
loop traffic system by enabling CAVs to respond to one
vehicle behind [30]. Unlike [28]–[30], LCC focuses on the
microscopic car-following dynamics, which might be more
feasible for practical use in individual vehicles, as individual
vehicle control has been widely deployed in ACC or CCC.

Compared with existing strategies, e.g., ACC, CCC, and
Lagrangian control of traffic flow, one distinctive feature of
LCC is the explicit consideration of an individual CAV as
both a leader and a follower in traffic flow. We note that
there are two important topics in complex networks or multi-
agent systems: 1) the control of follower agents, targeting at
tracking a prescribed trajectory of leader agents [31], [32];
existing studies on ACC, CACC and CCC lie in this category,
where one major objective of CAVs is to follow a designated
leading vehicle; 2) the control of leader agents, acting as
control inputs to achieve a desired performance for the entire
system [33], [34]. Most existing research focuses on how to
improve the behavior of the CAV as a follower agent, but
neglects another role of the CAV as a leader agent with
regard to the vehicles behind, especially in mixed traffic
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flow. In LCC, the potential of this dual identity of the CAV
is explicitly addressed. Another distinction of LCC from
existing ACC/CCC frameworks is the adequate employment
of V2V connectivity — the information of both the HDVs
ahead and those behind is utilized in CAVs’ control decision.
Informally, such a general communication topology is called as
both “looking ahead” and “looking behind” [6] (see Fig. 1(c)),
while previous ACC/CCC frameworks fall in the “looking
ahead only” category. Note that such general communication
topology is also motivated by the well-known bidirectional
topology in CACC or vehicle platooning, which utilizes the
information from one vehicle directly ahead and one directly
behind [6], [35]. LCC generalizes bidirectional topology to
the case where multiple vehicles are included in the commu-
nication network. Also, LCC explicitly takes the dynamics of
surrounding HDVs into account.

B. Contributions

In this paper, we investigate fundamental properties of the
proposed LCC framework, including dynamical modeling,
controllability, observability, and head-to-tail string stability.
One particular interest is to explore the potential of incorpo-
rating the motion of the vehicles behind into CAVs’ control.
Some preliminary results appeared in [36]. Precisely, our
contributions are as follows.

• We introduce a new notion of Leading Cruise Control
(LCC). A general modeling framework of LCC is pre-
sented based on linearized car-following dynamics. Three
special cases are discussed, which cover the notion of
CCC [17] and two fundamental driving behaviors of
individual vehicles in traffic flow: car-following and free-
driving [37]. This framework incorporates the motion of
HDVs behind into controller design and exploits the role
of the CAV as both a follower and a leader in mixed
traffic flow.

• We prove that the motion of HDVs behind is controllable
in LCC under a very mild condition, and also investigate
the control energy of LCC at different system sizes. This
result confirms the feasibility of the CAV for leading the
motion of its following HDVs and achieving a desired
traffic performance. Our controllability results generalize
the previous stabilizability results in a closed ring-road
system [10], [23], [25], and verify the possibility of traffic
control via CAVs on the common open road scenario.
Moreover, our observability analysis reveals that when
the CAV can directly measure the velocity error of one
individual vehicle, the states of all the HDVs ahead of it
are observable.

• We finally investigate the head-to-tail string stability
of the mixed traffic flow under the LCC framework.
Compared to previous CCC-type strategies [18], [20],
we reveal that LCC enables the CAV to have more
string-stable options in feedback policies and a bigger
capability to dampen traffic perturbations coming from
front. In addition, nonlinear traffic simulations demon-
strate that LCC enables the CAV to respond actively to
a perturbation that happens behind and reduce velocity

fluctuations of the entire upstream traffic flow. These
results confirm that LCC improves the capability of
CAVs in suppressing traffic instabilities, after “looking
behind” appropriately compared with “looking ahead”
only [18], [20].

The rest of this paper is organized as follows. Section II
introduces the modeling for the general LCC system and
three special cases. Section III presents the controllability
and observability analysis, and head-to-tail string stability is
investigated in Section IV. Traffic simulations are presented
in Section V, and Section VI concludes this paper.

II. THEORETICAL MODELING FRAMEWORK FOR LCC

We focus on the longitudinal control of CAVs in mixed
traffic flow. We first introduce the car-following dynamics
of HDVs, and then present the modeling framework of the
general LCC system. Three special cases are also discussed.

Consider an open single-lane setup, as shown in Fig. 1(c).
The CAV is indexed as vehicle 0, and we define F =
{1, 2, . . . , n} and P = {−1,−2, . . . ,−m} as the set of the
following vehicles behind and the preceding vehicles ahead,
respectively. The position, velocity and acceleration of vehicle
i (i ∈ {0} ∪ F ∪ P) is denoted as pi , vi and ai , respectively.
The spacing of vehicle i from its preceding vehicle, i.e., its
relative distance from vehicle i−1, is defined as si = pi−1−pi .
Without loss of generality, the vehicle length is ignored. There
exists a head vehicle in the front of this series of vehicles,
whose information is not received by the CAV via V2V, and
its velocity is represented as vh. Note that all the HDVs ahead
or behind, contained in F ∪P , are incorporated in the system
modeling framework; however, not all of them are required to
have V2V connections, and the CAV does not need to respond
to the motion of all the HDVs either. More discussions can be
found in Sections III and IV.

A. Nonlinear Dynamics of Individual Vehicles

We now present the nonlinear car-following dynamics of
individual HDVs. Many continuous-time models exist in the
literature, e.g., optimal velocity model (OVM) [15], intelligent
driver model (IDM) [16] and their variants. Most of them can
be written in the following form [38] (i ∈ F ∪ P)

v̇i (t) = F (si (t), ṡi (t), vi (t)) , (1)

where ṡi (t) = vi−1(t) − vi (t). Function F(·) means that the
acceleration of vehicle i depends on the relative distance, rela-
tive velocity and its own velocity; see Fig. 2(a) for illustration.

One prevailing HDV model is the nonlinear OVM
model [15], where the explicit expression of (1) is

F(·) = α (V (si (t)) − vi (t)) + β ṡi (t), (2)

with V (s) denoting the spacing-dependent desired velocity of
the human driver, typically given by a continuous piecewise
function

V (s) =

⎧⎨⎨⎨⎩
0, s ≤ sst;
fv (s), sst < s < sgo;
vmax, s ≥ sgo.

(3)
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Fig. 2. Front-to-rear reaction dynamics of HDVs. (a) The driver’s car-
following action usually depends on the motion of the vehicle immediately
ahead. (b) The typical relationship between the desired velocity of HDVs and
the spacing, as shown in (3) and (4).

In (3), the desired velocity V (s) becomes zero for a small
spacing sst , and reaches a maximum value vmax for a large
spacing sgo. When sst < s < sgo, the desired velocity is given
by a monotonically increasing function fv (s). A typical form
of fv (s) is as follows

fv (s) = vmax

2

�
1 − cos(π

s − sst

sgo − sst
)

�
. (4)

Fig. 2(b) illustrates a profile of V (s) under (4).
Regarding the CAV, indexed as 0, its acceleration signal is

utilized as the control input u(t), shown as follows

v̇0(t) = u(t). (5)

Note that the acceleration signal of the CAV also acts as the
external control input of the entire LCC system, which can be
directly designed, while all the HDVs are under human control.

B. Linearized Dynamics of General LCC Systems

It is known that in equilibrium traffic state, each vehicle
moves with the same equilibrium velocity v∗ and correspond-
ing equilibrium spacing s∗. According to (1), we have

F
�
s∗, 0, v∗	 = 0. (6)

In practice, the equilibrium velocity v∗ can be obtained from
the steady value of the velocity of the head vehicle vh [39],
and our main control objective is to stabilize the LCC system
at this equilibrium state. Define the error state between actual
and equilibrium state of vehicle i as

s̃i (t) = si (t) − s∗, ṽi (t) = vi (t) − v∗,

where s̃i , ṽi represent the spacing error and velocity error of
vehicle i , respectively. Then a linearized second-order model
for each HDV (i ∈ F ∪ P) can be derived by using (6) and
applying the first-order Taylor expansion to (1)
 ˙̃si (t) = ṽi−1(t) − ṽi (t),

˙̃vi (t) = α1s̃i (t) − α2ṽi (t) + α3ṽi−1(t),
(7)

with α1 = ∂F
∂s , α2 = ∂F

∂ ṡ − ∂F
∂v , α3 = ∂F

∂ ṡ evaluated at the
equilibrium state (s∗, v∗). To reflect the real driving behavior,
we have α1 > 0, α2 > α3 > 0 [22], [25]. Upon using the
OVM model (2), the coefficients in (7) become

α1 = αV̇ (s∗), α2 = α + β, α3 = β,

where V̇ (s∗) denotes the derivative of V (s) at s∗.

As for the CAV, we assume that it has the same equilibrium
spacing as the other HDVs under the same equilibrium veloc-
ity, and then the longitudinal dynamics of the CAV around
equilibrium can be written in a second-order form
 ˙̃s0(t) = ṽ−1(t) − ṽ0(t),

˙̃v0(t) = u(t).
(8)

We can now obtain the linearized dynamics model of the
LCC system around the prescribed equilibrium state (s∗, v∗).
Define the global state of LCC as

x(t) = �
s̃−m(t), ṽ−m (t), . . . , s̃0(t), ṽ0(t), . . . , s̃n(t), ṽn(t)

�T
.

(9)

Based on the linearized HDVs’ car-following model (7) and
the CAV’s dynamics (8), the linearized state-space model for
the LCC system is shown as follows

ẋ(t) = Ax(t) + Bu(t) + H ṽh(t), (10)

where ṽh(t) denotes the velocity error of the head vehi-
cle. The coefficient matrices A ∈ R

(2n+2m+2)×(2n+2m+2),
B, H ∈ R

(2n+2m+2)×1 are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1
P2 P1

. . .
. . .

P2 P1
S2 S1

P2 P1
. . .

. . .

P2 P1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B = �
bT−m, . . . , bT−1, bT

0 , bT
1 , . . . , bT

n

�T
,

H = �
hT−m, . . . , hT−1, hT

0 , hT
1 , . . . , hT

n

�T
,

with block entries as (i ∈ F ∪ P , j ∈ {0} ∪ F ∪ P\{−m})

P1 =
�

0 −1
α1 −α2

�
, P2 =

�
0 1
0 α3

�
, b0 =

�
0
1

�
, bi =

�
0
0

�
,

S1 =
�

0 −1
0 0

�
, S2 =

�
0 1
0 0

�
, h−m =

�
1
α3

�
, h j =

�
0
0

�
.

As shown in (1) and Fig. 2(a), the longitudinal motion
of HDVs is influenced by its preceding vehicle immediately
ahead. While V2V communication greatly enlarges the percep-
tion range for individual vehicles, most existing frameworks
for CAV control in mixed traffic flow are limited to utilizing
the information from multiple HDVs ahead — CCC is a par-
ticular example. LCC generalizes these existing frameworks,
and a straightforward distinction is the explicit consideration
of those vehicles behind, as shown in (10). To highlight
this distinction, we present three special cases of the general
LCC system below. In particular, we show that the CCC-type
framework can be viewed as a special case in LCC as well.
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Fig. 3. Two special cases of LCC when P = ∅. (a) In CF-LCC, the CAV
adopts the HDV’s strategy (7) to follow one single preceding vehicle, i.e.,
the head vehicle. (b) In FD-LCC, there are no preceding vehicles.

C. Special Cases of LCC

The longitudinal behavior of individual vehicles includes
two fundamental categories: car-following and free-
driving [37]. Accordingly, we here present two special
LCC systems, Car-Following LCC and Free-Driving LCC,
as demonstrated in Fig. 3. In both cases, we assume that
the CAV has no V2V communication with its preceding
HDVs, i.e., m = 0,P = ∅, and we exclusively focus on
“looking behind” characteristics in the LCC framework.
Finally, we also show CCC as a special case in LCC.

Special Case 1: Car-Following LCC System (CF-LCC)
In the first case, we assume that the CAV adopts the HDVs’

car-following strategy (7) to follow one single preceding
vehicle, i.e., the head vehicle. Meanwhile, we also apply an
additional control input û(t) into the CAV, which is determined
by the state of the vehicles behind. Then, the longitudinal
dynamics of the CAV can be expressed by
 ˙̃s0(t) = ṽh(t) − ṽ0(t),

˙̃v0(t) = α1 s̃0(t) − α2ṽ0(t) + α3ṽh(t) + û(t).
(11)

In this case, the global state of the CF-LCC system reduces
from (9) to

xc(t) = [s̃0(t), ṽ0(t), s̃1(t), ṽ1(t), . . . , s̃n(t), ṽn(t)]T.

Then, the linearized state-space model for the CF-LCC system
becomes

ẋc(t) = Acxc(t) + B1û(t) + H1ṽh(t), (12)

where Ac ∈ R
(2n+2)×(2n+2), B1, H1 ∈ R

(2n+2)×1 are given by

Ac =

⎡⎢⎢⎢⎣
P1
P2 P1

. . .
. . .

P2 P1

⎤⎥⎥⎥⎦ , B1 =

⎡⎢⎢⎢⎢⎢⎣
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎦ , H1 =

⎡⎢⎢⎢⎢⎢⎣
1
α3
0
...
0

⎤⎥⎥⎥⎥⎥⎦ .

Special Case 2: Free-Driving LCC System (FD-LCC)
The second case is to assume that the CAV is driving freely

with no vehicles ahead. Then the CAV’s spacing s0 has no
real-world meaning and we consider its position instead as a

state variable. Then, the longitudinal dynamics of the CAV
can be given by a simple second-order model as


ṗ0(t) = ṽ0(t),
˙̃v0(t) = u(t).

Defining the global state of the FD-LCC system as

xf(t) = �−p0(t), ṽ0(t), s̃1(t), ṽ1(t) . . . , s̃n(t), ṽn(t)
�T

,

where the negative sign exits for consistency with (8) and (11),
then the linearized state-space model for the FD-LCC system
is consequently obtained

ẋf(t) = Af xf(t) + B1u(t), (13)

where Af ∈ R
(2n+2)×(2n+2) is given by

Af =

⎡⎢⎢⎢⎣
S1
P2 P1

. . .
. . .

P2 P1

⎤⎥⎥⎥⎦ .

Special Case 3: Connected Cruise Control (CCC)
In the existing CCC framework [17], [18], [20], the CAV

only utilizes the information from multiple preceding HDVs
to determine its control input, without considering the motion
of the vehicle behind. By letting n = 0,F = ∅, the proposed
LCC system (10) is naturally reduced to the CCC system.
Specifically, the state of CCC is chosen as

xp(t) = [s̃−m(t), ṽ−m (t), . . . , s̃−1(t), ṽ−1(t), s̃0(t), ṽ0(t)]T.

The linearized state-space model for the CCC system is

ẋp(t) = Apxp(t) + B2 u(t) + H2ṽh(t), (14)

where Ap ∈ R
(2m+2)×(2m+2), B2, H2 ∈ R

(2m+2)×1 are given
by

Ap =

⎡⎢⎢⎢⎢⎢⎣
P1
P2 P1

. . .
. . .

P2 P1
S2 S1

⎤⎥⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, H2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
α3
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 1: In the general LCC system (10), the CF-LCC
system (12) and the CCC system (14), the velocity error of
the head vehicle ṽh(t) can be viewed as an external disturbance
signal into the system. Note that the models (10), (12), (13),
and (14) are all based on an linearization around an equilib-
rium velocity v∗ that needs to be chosen or designed carefully.
For LCC, CF-LCC and CCC, the equilibrium velocity v∗ is
determined by the equilibrium velocity of the head vehicle
vh, and this information can be estimated from its historical
trajectory data or current traffic condition. In contrast, for
FD-LCC system, the equilibrium velocity can be designed
according to the CAV’s own desired velocity. We also refer the
interested reader to [10, Section IV.B] and [23, Section IV.C]
for more discussions on the equilibrium velocity v∗ in ring-
road mixed traffic systems.
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III. CONTROLLABILITY AND OBSERVABILITY

OF LCC SYSTEMS

In this section, we analyze the controllability and observ-
ability of the LCC systems. This allows us to reveal the
theoretical potential of the CAV on controlling the mixed
traffic flow consisting of its following HDVs behind and
preceding HDVs ahead.

A. Controllability Analysis

According to the front-to-rear reaction dynamics of human
drivers (see the purple arrows in Fig. 1(c) and Fig. 2(a)), it is
easy to see that the CAV’s action will have certain influence
on its following HDVs. The notion of controllability is an
essential metric to quantify such influence. If a linear system is
controllable, it can be driven from any initial state to arbitrary
desired state within arbitrary finite time.

Definition 1 (Controllability [40]): The dynamical system
ẋ = Ax + Bu is controllable, if for any initial state x(0) = x0,
any time tf > 0 and any final state xf, there exists an input
u(t) such that x(tf) = xf.

Lemma 1 (PBH Controllability Test [40]): System (A, B)
is controllable, if and only if [λI − A, B] is of full row rank
for all λ being an eigenvalue of A, where I denotes an identity
matrix with compatible dimension.

Lemma 2 (Controllability Invariance [40]): The controlla-
bility is invariant under state feedback. Precisely, (A, B) is
controllable if and only if (A − B K , B) is controllable for any
matrix K with compatible dimensions.

We first consider the FD-LCC system in which there exist
several HDVs following the CAV (see Fig. 3(b)). We have the
following result.

Theorem 1: The FD-LCC system with no vehicle ahead and
n HDVs behind, given by (13), is controllable, if the following
condition holds

α1 − α2α3 + α2
3 �= 0. (15)

Proof: We prove this result by contradiction. Suppose that
the FD-LCC system (13) is not controllable. By Lemma 1,
there exists an eigenvalue λ of Af such that [λI − Af , B1] is
not of full rank. Hence, there exists a nonzero vector ρ such
that ρT [λI − Af , B1] = 0, which leads to

ρT (λI − Af) = 0; (16a)

ρT B1 = 0. (16b)

Denote ρ as

ρ = �
ρT

0 , ρT
1 , ρT

2 , . . . , ρT
n

�T
,

where ρi = �
ρi1, ρi2

�T ∈ R
2×1, i = 0, 1, . . . , n. Since only

the second element in B1 is nonzero, (16b) leads to ρ02 = 0.
Substituting the expression (13) of Af into (16a), we have
(i ∈ {1, . . . , n − 1})

ρT
0 (S1 − λI ) + ρT

1 P2 = 0; (17a)

ρT
i (P1 − λI ) + ρT

i+1 P2 = 0; (17b)

ρT
n (P1 − λI ) = 0. (17c)

In the following, we solve the equations (17) by discussing
two cases separately.

Case 1: λ2 + α2λ + α1 �= 0.
In this case, P1 − λI is nonsingular. According to (17c),

we have ρT
n = 0. Substituting ρT

n = 0 into (17b), we have
ρT

n−1 = 0. Using (17b) recursively, we can obtain that ρT
i =

0, i = 1, . . . , n, which also leads to ρT
0 (S1 − λI ) = 0.

Expanding this equation, we have ρ01 + λρ02 = 0. Since
ρ02 = 0, it is obtained that ρ01 = 0. Consequently, we arrive
at ρ = 0, which contradicts the fact that ρ is nonzero.

Case 2: λ2 + α2λ + α1 = 0.
In this case, we have λ �= 0 since α1 > 0. Also, it can

be obtained that α3λ + α1 �= 0; otherwise, condition (15)
will be contradicted. Expanding (17a) leads to λρ01 = 0 and
ρ01 + λρ02 + ρ11 + α3ρ12 = 0. Hence, we have ρ01 = 0 and
ρ11 + α3ρ12 = 0. Meanwhile, letting i = 1 and expanding
(17b) yields ρ12 = λ

α1
ρ11, which, combined with ρ11 +

α3ρ12 = 0, leads to ρ11 = ρ12 = 0. Letting i = 2, . . . , n
and expanding (17b) and (17c), we can obtain the following
results (i = 2, . . . , n)

λρi1 − α1ρi2 = 0, (18a)�
λ2 + α2λ + α1

�
ρ(i−1)1 = (α3λ + α1) ρi1. (18b)

Since α3λ + α1 �= 0, substituting λ2 + α2λ + α1 = 0
into (18b) and then (18a) yields ρi1 = ρi2 = 0, i = 2, . . . , n.
Accordingly, we arrive at ρ = 0, which contradicts ρ �= 0.

To summarize, the assumption does not hold. We now
conclude that the FD-LCC system (13) is controllable.

Theorem 1 allows us to establish the controllability of
the CF-LCC system (12), as summarized in the following
corollary.

Corollary 1: The CF-LCC system where the CAV adopts
the HDVs’ dynamics (7) to follow one vehicle ahead with n
HDVs following behind, given by (12), is controllable if the
condition (15) holds.

Proof: The proof is immediate by noting that the system
matrix Ac in the CF-LCC system (12) can be derived from Af
in the FD-LCC system (13) under state feedback. Specifically,
we have

Ac = Af − B1K1,

with K1 = [−α1, α2, 0, 0, . . . , 0, 0] ∈ R
1×(2n+2). Therefore,

the proof follows from Lemma 2 and Theorem 1.
Remark 2: Theorem 1 generalizes the stabilizability results

in the closed ring-road mixed traffic system [10], [23], where
it is shown that one single CAV can stabilize the entire traffic
system. Due to the existence of the ring-road structure, there
always exists an uncontrollable mode in the ring-road sys-
tem [10], while in the open straight road scenario, the FD-LCC
or CF-LCC system is completely controllable under condi-
tion (15). We note that (15) is a sufficient condition, and
with random choices of α1, α2, α3, condition (15) holds with
probability one. Accordingly, FD-LCC and CF-LCC are con-
trollable with probability one, meaning that the closed-loop
poles of the linearized FD-LCC or CF-LCC system can be
placed arbitrarily.
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The following theorem characterizes the controllability of
the general LCC system.

Theorem 2: Consider the general LCC system with m vehi-
cles ahead and n HDVs behind, given by (10). The following
statements hold:

1) The subsystem consisting of the states of the vehi-
cles ahead, i.e., s̃−m (t) , ṽ−m (t) , . . . , s̃−1 (t) , ṽ−1 (t) is
uncontrollable.

2) The subsystem consisting of the states of the
CAV and the vehicles behind, i.e., s̃0 (t) , ṽ0 (t) ,
s̃1 (t) , ṽ1 (t) , . . . , s̃n (t) , ṽn (t), is controllable, if the
condition (15) holds.

Proof: We first decompose the LCC system (10) into two
subsystems. Consider a nonsingular matrix T given by

T −1 =
�

0 I2n+2
I2m 0

�
,

where Ir denotes an identity matrix of dimension r . Then,
the LCC system (10) can be represented by a different basis,
defined as

x̃ = T −1x =
�

x1
x2

�
,

where

x1 = [s̃0(t), ṽ0(t), s̃1(t), ṽ1(t), . . . , s̃n(t), ṽn(t)]T,

x2 = [s̃−m(t), ṽ−m (t), . . . , s̃−1(t), ṽ−1(t)]T.

The linear dynamics (10) can thus be transformed into

˙̃x(t) = �Ax̃(t) + �Bu(t) + �H ṽh(t). (19)

where

�A = T −1 AT =
�

Af A12
0 A22

�
,

�B = T −1 B =
�

B1
0

�
,

�H = T −1 H =
�
hT

0 , hT
1 , . . . , hT

n , hT−m , . . . , hT−1

�T
,

with

A12 =

⎡⎢⎢⎢⎢⎣
0 . . . 0 S2

. . . 0
. . .

...
0

⎤⎥⎥⎥⎥⎦ ∈ R
(2n+2)×(2n+2),

A22 =

⎡⎢⎢⎢⎣
P1
P2 P1

. . .
. . .

P2 P1

⎤⎥⎥⎥⎦ ∈ R
2m×2m .

The linear model (19) is equivalent to (10) for the general
LCC system. This is written as�

ẋ1(t)
ẋ2(t)

�
=

�
Af A12
0 A22

� �
x1(t)
x2(t)

�
+

�
B1
0

�
u(t) + �H ṽh(t). (20)

Then, it can be clearly observed that x2(t) constitutes an
uncontrollable subspace of the LCC system, thus leading to
the first statement in Theorem 2. As for x1(t), it has been
revealed from Theorem 1 that when the condition (15) holds,

(Af, B1) is controllable. Therefore, we can obtain the second
statement in Theorem 2.

In CCC-type frameworks, it has been pointed out that the
CCC system is not controllable [22]. This is a direct corollary
of Theorem 2.

Corollary 2: The CCC system with no vehicles behind and
m HDVs ahead given by (14) is not completely controllable.
The controllable subspace consists of the state of the CAV
itself only, i.e., s̃0(t), ṽ0(t).

In (20), we present a controllability decomposition of the
general LCC system (10). The physical interpretation of The-
orem 2 is that the control input of the CAV has no influence
on the state of the preceding HDVs, but has full control
of the motion of the following HDVs. In the CCC system,
the only controllable part is the state of the CAV itself, i.e.,
s̃0(t), ṽ0(t); consequently, the control objective of CCC is
limited to improving the performance of the CAV’s own car-
following behavior. By contrast, the controllability of the state
of the vehicles behind allows the CAV to act as a leader with
a global consideration. Precisely, the CAV has the potential to
improve the performance of the entire upstream traffic flow.

B. Control Difficulty at Different System Sizes
The controllability condition (15) has no bound on the

system size n, indicating that independent to the number of
HDVs behind, the system remains controllable using the input
of a single CAV. This result is consistent with the mechanism
of traffic waves, where the perturbation of one individual
vehicle may cause persistent velocity fluctuations propagating
upstream the entire traffic flow. In LCC systems, however,
it might be impractical for one single CAV to lead the motion
of a large number of HDVs, which might cause unnecessary
control actions for the CAV or even raise safety concerns
given that the CAV still needs to adapt to the traffic ahead.
Accordingly, it is important to determine how many CAVs
behind should be incorporated into the LCC framework before
designing specific controllers. We here provide discussions
from the perspective of control difficulty.

In fact, controllability is a qualitative criterion but fails
to quantify the difficulty of a control task for a controllable
system. If a controllable dynamical system is “hard” to control,
a large amount of input energy might be required to reach
a target state from an initial state [41]. Indeed, a class of
energy-related metrics has been proposed to further quantify
the control difficulty besides controllability. They have found
many applications in complex networks and multi-agent sys-
tems [42]–[44]. Here, we discuss the influence of the size n
of the following HDVs in the LCC systems using a control
energy-related index, defined as

� t
0 u(τ )Tu(τ )dτ . In vehicular

systems, this index is also closely related to fuel consumption,
driving comfort and safety [45].

Definition 2 (Controllability Gramian [41]): For a control-
lable dynamical system ẋ(t) = Ax(t) + Bu(t), its Controlla-
bility Gramian at time t is defined as

W (t) =
� t

0
eAτ B BTeATτ dτ, (21)

which is always positive definitive.
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Fig. 4. A network schematic of the FD-LCC system consisting of one leading
CAV and n HDVs. The blue node with control input u(t) represents the CAV,
while the gray uncontrolled nodes represent the HDVs.

Lemma 3 (Minimum control energy [41]): For a control-
lable dynamical system ẋ(t) = Ax(t) + Bu(t), the minimum
control energy required to move the system from the initial
state x(0) = x0 to the target state x(t) = xtar is given by

min
� t

0
u(τ )Tu(τ )dτ =

�
xtar−eAt x0

�T
W (t)−1

�
xtar−eAt x0

�
.

(22)
According to Lemma 3, the state space corresponding to

larger eigenvalues of W (t)−1, i.e., smaller eigenvalues of
W (t), requires higher input energy to reach, i.e., is “harder”
to control. This interpretation inspires using specific metrics
related to W (t) or W (t)−1 to quantify control difficulty [41].
Two typical examples are λmin(W (t)) and Tr(W (t)−1), where
λmin(·) and Tr(·) denotes the smallest eigenvalue and the trace
of a matrix, respectively. In particular, λmin(W (t)) represents
a worst-case metric inversely related to the energy required to
move the system in the direction that is the most difficult to
move, while Tr(W (t)−1) measures the average control energy
over random target states [42].

We utilize these two metrics to measure the energy-related
control difficulty of the LCC systems at different system
sizes. We focus on the FD-LCC system (13), which can be
abstracted as a chain network with one single input node and n
uncontrolled nodes, as shown in Fig. 4. The results below can
be extended to the CF-LCC system or general LCC system.
Then, we numerically calculate the value of λmin(W (t)) and
Tr(W (t)−1) at different system sizes n. The OVM model (2) is
utilized to derive the value of the system matrix Af in a typical
parameter setup [10], [22], [23]: α = 0.6, β = 0.9, vmax =
30, sst = 5, sgo = 35, v∗ = 15. The results under three
different time lengths t = 10 s, 20 s, 30 s are shown in Fig. 5.
It can be clearly observed that as the system size n increases,
λmin(W (t)) drops down rapidly, while Tr(W (t)−1) grows up
dramatically.

Based on Fig. 5, one can deduce that the FD-LCC system
requires an exponential control energy with respect to system
size n. As expected, the control energy is reduced when the
time length t increases, indicating that it becomes easier to
control the FD-LCC system to a target state given a longer time
period. Although the FD-LCC system remains controllable at
arbitrary system size n, our numerical results suggest that it
is more feasible for the CAV to respond to the motion of a
moderate number of the HDVs behind in the LCC framework,
considering practical fuel consumption, driving comfort and
safety of the CAV [45].

Fig. 5. Results of control energy at different system sizes. (a) and
(b) demonstrate the smallest eigenvalue of W (t) and the trace of W (t)−1,
respectively. At a relatively large value of n, W (t)−1 is computationally
intractable, since W (t) is close to singularity.

Remark 3: Note that network control with a few input
nodes has attracted extensive interest, and controllability and
control energy are two fundamental metrics; see, e.g., [43],
[46], [47]. For asymptotically stable systems, the Controlla-
bility Gramian (21) is finite when t → ∞, which can be
computed by solving a Lyapunov equation [41]. However,
there exists a zero eigenvalue in open-loop LCC systems, and
thus the Controllability Gramian can only be calculated at a
finite time horizon in (21). It is non-trivial to get an analytical
expression for (21). We also note that some network systems
with first-order dynamics are shown to require an exponen-
tially growing control energy; see, e.g., [42, Example 1]. For
the CAV control in mixed traffic, it will be interesting to
quantify the control difficulty more precisely. We left this in
the future work.

C. Observability Analysis

In practice, not all the HDVs might have V2V capabilities,
or the CAV might only have access to the information of its
neighboring HDVs due to limit of communication range. Here,
we are interested in whether the CAV can estimate the states
of all the HDVs in the LCC system with limited information
available. In particular, we analyze the observability property
of the LCC system. As a dual concept of controllability,
observability quantifies the ability of estimating the system’s
state from its output.

Definition 3 (Observability [40]): Consider a dynamical
system ẋ = Ax + Bu, y = Cx . The pair (A, C) is observable
if, for any time tf > 0, the initial state x(0) = x0 can be
determined from the time history of the input u(t) and the
output y(t) in the interval [0, tf].

Lemma 4 (PBH Observability Test [40]): (A, C) is observ-
able, if and only if

�
(λI − A)T, CT

�
is of full row rank for all

λ being a right eigenvalue of A.

We assume that the CAV can only receive the velocity error
signal ṽk(t) of one HDV indexed as k (1 ≤ k ≤ n). This signal
might be easier to obtain compared to the spacing error signal
s̃i (t), since the equilibrium spacing s∗ of one HDV is non-
trivial to measure accurately. We now consider the FD-LCC
system (13), and the output is given by

yf(t) = C(k)
f x(t), (23)
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where yf denotes the output and C(k)
f ∈ R

1×(2n+2) denotes the
output matrix, given by

C(k)
f =

�
cT

0 , cT
1 , . . . , cT

n

�
,

with

ck =
�

0
1

�
, ci =

�
0
0

�
, i ∈ {0} ∪ F\{k}.

Then the observability result is as follows.
Theorem 3: Consider the FD-LCC system with no vehicle

ahead and n HDVs behind, given by (13). Suppose the CAV
can measure the velocity error of vehicle k (1 ≤ k < n), given
by (23). Then, we have the following statements:

1) The subsystem consisting of the states of the vehicles
indexed from 1 to k, i.e., s̃1 (t) , ṽ1 (t) , . . . , s̃k (t) , ṽk (t)
is observable, if the condition (15) holds.

2) The subsystem consisting of the states of the vehicles
indexed from k + 1 to n, i.e., s̃k+1 (t) , ṽk+1 (t) , . . . ,
s̃n (t) , ṽn (t), is unobservable.

This result is expected considering the dual relationship
between controllability and observability, and its proof is
similar to that of Theorem 1 and Theorem 2 based on the PBH
observability test and Kalman decomposition. In addition,
we also have the following corollary.

Corollary 3: Consider the FD-LCC system with no vehicle
ahead and n HDVs behind, given by (13). The CAV can
measure the velocity error signal of vehicle n. Then the
states of all the HDVs, i.e., s̃1 (t) , ṽ1 (t) , . . . , s̃n (t) , ṽn (t),
are observable, if the condition (15) holds.

Note that Theorem 3 and Corollary 3 are also applicable to
the CF-LCC system. In the following, we proceed to consider
the general LCC system (10). In addition to velocity error
signal of one HDV indexed as k, the CAV is naturally able
to measure its own states, including the spacing error and the
velocity error. Thus, the output of LCC can be represented by

y(t) = C(k)x(t), (24)

where y denotes the output signal for LCC. The output
matrix C(k) ∈ R

3×(2n+2m+2) is given by

C(k) = �
2m+1, 2m+2, 2m+2+2k

�T
,

where the vector r denotes a (2n + 2m + 2) × 1 unit vector,
with the r -th entry being one and the others being zeros.

We are now ready to present the observability result for the
general LCC system.

Theorem 4: Consider the general LCC system with m vehi-
cles ahead and n HDVs behind, given by (10). Suppose that
the CAV can measure its own states and the velocity error
signal of vehicle k (1 ≤ k < n), given by (24). Then, we have
the following statements:

1) The subsystem consisting of the states of the vehi-
cles indexed from −m to k, i.e., s̃−m (t) , ṽ−m (t) , . . . ,
s̃k (t) , ṽk (t) is observable, if the condition (15) holds.

2) The subsystem consisting of the states of the vehicles
indexed from k + 1 to n, i.e., s̃k+1 (t) , ṽk+1 (t) , . . . ,
s̃n (t) , ṽn (t), is unobservable.

Corollary 4: Consider the general LCC system with m
vehicles ahead and n HDVs behind, given by (10). Suppose the
CAV can measure its own states and the velocity error signal
of vehicle n, i.e., the output is given by (24) with k = n. Then
the LCC system is observable, if the condition (15) holds.

The following result for the CCC system is immediate.
Corollary 5: Consider the CCC system with no vehicles

behind and m HDVs ahead given by (14). Suppose the
CAV can measure its own states. Then, the CCC system is
observable, if the condition (15) holds.

Remark 4: We note that the observability property for
mixed traffic flow is less studied before, and the prevailing
CCC system [18], [20] did not address this issue explicitly.
When designing control strategies for CAVs, most existing
work focuses on state feedback, especially a full-state feedback
controller (see, e.g., [10], [20], [22]), which might be impracti-
cal. To deal with limited information, one approach is to design
a structured controller (see, e.g., [48]–[50] and the references
therein), which has shown promising results in controller
synthesis for ring-road mixed traffic systems [23]. Another
approach is to design a dynamical output feedback controller.
The observability results in Theorems 3 and 4 indicate that
we can design an optimal state estimator given a dynamical
model of the LCC systems, and the linear-quadratic-Gaussian
control is applicable. However, it might be non-trivial to obtain
an accurate model for LCC systems, and possible model
mismatches should be handled explicitly to achieve good
robustness performance [51]. It will be interesting for future
work to design a robust controller for LCC systems.

IV. HEAD-TO-TAIL STRING STABILITY

The controllability/observability analysis confirms the
potential of the CAV to actively lead the motion of the
following HDVs and stabilize upstream traffic flow. Regarding
the preceding vehicles ahead, it is important to address the
CAV’s capability in dampening the perturbations coming from
front. This capability can be captured by the notion of string
stability [52]. In this section, we study the string stability
performance of mixed traffic flow under the proposed LCC
framework.

A. Head-to-Tail Transfer Function

String stability depicts the ability of an individual vehicle
in attenuating velocity fluctuations coming from the vehicle
immediately ahead. For a series of vehicles, head-to-tail string
stability is utilized more often, especially in a mixed traffic
scenario. The definition is presented below.

Definition 4 (Head-to-Tail String Stability [18]): Given a
series of consecutive vehicles, denote the velocity deviation
of the vehicle at the head and the one at the tail as ṽh (t) and
ṽt (t), respectively. The head-to-tail transfer function is defined
as

	(s) = �Vt(s)�Vh(s)
, (25)

where �Vh(s), �Vt(s) denote the Laplace transform of ṽh(t) and
ṽt(t) , respectively. Then the system is called head-to-tail string
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Fig. 6. Schematic of the LCC system when n = m = 2 and the CAV utilizes the controller (27). Note that the CAV adopts the HDV’s strategy (7) to follow
the vehicle immediately ahead, as depicted by the purple arrow pointing to vehicle 0. Meanwhile, μi , ki , i = 1, 2 represent “looking behind” feedback gains,
which correspond to the following vehicles, while μi , ki , i = −1,−2 represent “looking ahead” feedback gains, which correspond to the preceding vehicles.

stable if and only if

|	 ( jω) |2 < 1, ∀ω > 0, (26)

where j2 = −1, and | · | denotes the modulus.
Head-to-tail string stability describes a property in a series

of vehicles where the perturbation signals are attenuated
between the head and the tail vehicles for all excitation fre-
quencies. When head-to-tail string stability is violated, a small
perturbation in the head vehicle might cause severe stop-and-
go behaviors in the following vehicles.

We investigate the head-to-tail string stability property in the
proposed LCC framework. As shown in Fig. 1(c), we consider
a general LCC system with m preceding vehicles and n
following HDVs. Let the velocity deviation ṽh(t) of the head
vehicle (the vehicle colored yellow in Fig. 1(c)) be the input
of the LCC system, and the velocity deviation ṽn(t) of the
HDV at the very tail be the output. We then derive the head-
to-tail transfer function of the LCC system, defined as (25).
First, the Laplace transform of the linearized car-following
model (7) of HDVs yields the local transfer function of HDVs’
dynamics as follows (i ∈ F ∪ P)

�Vi (s)�Vi−1 (s)
= α3s + α1

s2 + α2s + α1
= ϕ (s)

γ (s)
,

with

ϕ (s) = α3s + α1, γ (s) = s2 + α2s + α1.

For the CAV, we assume that it adopts the HDVs’ strat-
egy (7) to follow the vehicle immediately ahead, while also
exploiting the state of other HDVs for feedback control; see
Fig. 6 for illustration when n = m = 2. Denote μi , ki as the
static feedback gain of the spacing error and the velocity error
of vehicle i (i ∈ F ∪P), respectively. Then, the control input
is given by

u (t) = α1s̃0(t) − α2ṽ0(t) + α3ṽ−1(t)

+
�

i∈F∪P
(μi s̃i (t) + ki ṽi (t)) . (27)

Note that if vehicle i is not connected or the CAV does not
need to respond to its motion, its corresponding feedback gain
is naturally set to zeros, i.e., μi = ki = 0. Particularly, when
μi = ki = 0, ∀i ∈ F∪P , this control strategy is reduced to the
linearized car-following dynamics of HDVs. Substituting (27)
into the CAV’s longitudinal dynamics (8) and combining the

Laplace transform of (7) and (8), we can obtain the head-to-
tail transfer function of the LCC system as follows1

	 (s) = G(s) ·
�

ϕ (s)

γ (s)

�n+m

, (28)

where

G(s) =
ϕ (s) + �

i∈P Hi (s) ( ϕ(s)
γ (s) )

i+1

γ (s) − �
i∈F Hi (s) ( ϕ(s)

γ (s) )
i

,

with

Hi (s) = μi

�
γ (s)

ϕ(s)
− 1

�
+ ki s, i ∈ F ∪ P .

We consider three special cases to provide further insights
of the transfer function (28).

1) When μi = ki = 0, i ∈ F ∪ P , i.e., the CAV follows
the same control strategy as human drivers, the head-to-tail
transfer function then degrades to

	1 (s) =
�

ϕ (s)

γ (s)

�n+m+1

, (29)

corresponding to a platoon of n + m + 1 HDVs.
2) When μi = ki = 0, i ∈ F , i.e., the CAV does not

exploit the information of the following HDVs for feedback
control, the controller (27) becomes a typical CCC strategy.
This strategy considers the motion of multiple vehicles ahead
for longitudinal control. In this case, the head-to-tail transfer
function for the LCC framework becomes

	2 (s) =
ϕ (s) + �

i∈P Hi (s) ( ϕ(s)
γ (s) )

i+1

γ (s)
·
�

ϕ (s)

γ (s)

�n+m

. (30)

3) When μi = ki = 0, i ∈ P , the CAV adopts the same
strategy as that of HDVs to follow the preceding vehicle, and
meanwhile considers the information of multiple HDVs behind
to adjust its own motion. Under this circumstance, the head-
to-tail transfer function becomes

	3 (s) = ϕ (s)

γ (s) − �
i∈F Hi (s) ( ϕ(s)

γ (s) )
i

·
�

ϕ (s)

γ (s)

�n+m

. (31)

As clearly observed from (30) and (31), incorporating either
the information of the preceding vehicles or the following
vehicles brings a significant change to the head-to-tail transfer
function of mixed traffic flow, but the changes of the two
types work in different ways. Most existing studies addressed

1Some detailed steps and additional information can be found in the appen-
dix of our extended version at https://arxiv.org/pdf/2012.04313.pdf.
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Fig. 7. “Looking ahead” head-to-tail string stable regions (n = m = 2).
(a)(c)(e) and (b)(d)(f) correspond to the feedback gains of vehicle −1 and
vehicle −2 respectively. (a)(b) represent the original string stable regions
(colored in blue) when monitoring one single preceding vehicle, while
(c)-(f) represent the string stable regions after incorporation of one vehicle
behind with the expanded region colored in red. Specifically, μ1 = k1 = −1
in (c)(d), and μ2 = k2 = −1 in (e)(f).

the head-to-tail string stability of mixed traffic flow when
the CAV monitors the motion of the vehicles ahead, i.e.,
adopting a CCC-type framework [18], [20]. The influence of
the incorporation of the vehicles behind remains unclear on
the head-to-tail string stability of mixed traffic flow.

Remark 5: Previous research on CCC-type frameworks
mostly focus on the transfer function from the head vehicle
to the CAV itself, instead of a certain vehicle behind the
CAV. It is worth noting that the perturbations continue to
propagate upstream after reaching the CAV : although the CAV
can mitigate the perturbations coming from front, the pertur-
bations might still be amplified behind the CAV. It is more
desirable to incorporate the motion information of the HDVs
behind into the CAV’s control, thus improving the capability
of CAVs in attenuating perturbations in the entire mixed
traffic flow.

B. Head-to-Tail String Stable Region

We proceed to numerically solve the specific head-to-
tail string stable regions of the feedback gains in (27).
We consider the LCC system in Figure 6 with a specific

Fig. 8. “Looking behind” head-to-tail string stable regions (n = m = 2) when
the CAV monitors one following HDV. (a) and (b) correspond to the feedback
gains of vehicle 1 and vehicle 2 respectively. The blue areas represent head-
to-tail string stable regions, while the dashed areas represent asymptotically
unstable regions.

scenario n = m = 2. The OVM model (2) is employed for the
numerical solution of (26) with a typical parameter setup [22],
[23]: α = 0.6, β = 0.9, vmax = 30, sst = 5, sgo = 35, v∗ =
15. It is not difficult to verify that this parameter setup yields
a string unstable behavior of HDVs. This indicates that when
μi = ki = 0 for i = −2,−1, 1, 2, i.e., the CAV adopts exactly
the same driving strategy as HDVs, a perturbation of the head
vehicle will be amplified along upstream traffic flow consisting
of HDVs only.

The first numerical study investigates the head-to-tail string
stable region of the mixed traffic flow when the CAV only
utilizes the information of one single HDV. The results are
demonstrated in Fig. 7(a)(b) and Fig. 8(a)(b), where the
head-to-tail string stable regions are colored blue. Comparing
Fig. 7(a)(b) and Fig. 8(a)(b), we can clearly observe that
“looking behind” string stable areas of the feedback gains are
apparently larger than “looking ahead” ones. This means that
when the CAV monitors the motion of the vehicles behind,
it has a larger feasible region in the feedback policies (27)
to dampen traffic perturbations, compared to considering the
state of the vehicles ahead.

Second, we investigate the change in the “looking ahead”
string stable regions after incorporating the motion of the
vehicles behind. Precisely, we fix the feedback gains corre-
sponding to one following vehicle to an appropriate value
according to Fig. 8, and then solve again the string stable
regions of the feedback gains corresponding to one preceding
vehicle. Two cases are chosen: μ1 = −1, k1 = −1 or
μ2 = −1, k2 = −1 (highlighted in Fig. 8), corresponding to
additional consideration of vehicle 1 or vehicle 2, respectively.

The new “looking ahead” string stable results are
demonstrated in Fig. 7(c)-(f). The blue areas denote the
original head-to-tail string stable regions when monitoring one
single preceding vehicle, which remain the same as those
in Fig. 7(a)(b). However, after the CAV considers the motion
of one following vehicle for feedback control at the same time,
the string stable regions of the “looking ahead” feedback gains
witness a significant expansion, as highlighted in red areas
in Fig. 7(c)-(f). This indicates that after incorporating the infor-
mation of the following vehicles into CAV’s controller design,
the CAV has more string stable choices in the feedback gains
corresponding to the preceding vehicles. This result reveals a
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TABLE I

PARAMETER SETUP IN FEEDBACK GAINS

remarkable potential of the LCC framework: combining the
information from both the vehicles ahead and the vehicles
behind provide more possibilities in dampening traffic waves
and smoothing traffic flow than the traditional “looking ahead
only” strategies.

V. NONLINEAR TRAFFIC SIMULATIONS

Our theoretical results are obtained based on the linearized
dynamics of the LCC systems. In this section, we present sim-
ulation results by employing nonlinear car-following models.
In particular, the nonlinear OVM model (2) is utilized for
modeling longitudinal behaviors of HDVs, where α = 0.6,
β = 0.9, vmax = 30, sst = 5, sgo = 35. Two types of sim-
ulations, mitigating traffic perturbation ahead and leading the
motion of HDVs behind, are conducted to validate the potential
of LCC. All the simulations are carried out in MATLAB;
the scripts can be downloaded from https://github.com/soc-
ucsd/LCC.

Note that in all our nonlinear traffic simulations, we added
a low-level emergency braking system to guarantee safety for
the CAV, which is given by

v̇0(t) = amin, if
v2

0(t) − v2−1(t)

2s0(t)
≥ |amin| ,

where the maximum acceleration and deceleration of each
vehicle are set as amax = 2 m/s2 and amin = −5 m/s2,
respectively.

A. Mitigating Traffic Perturbations Ahead

The head-to-tail string stability analysis in Section IV has
revealed that incorporating the vehicles behind contributes to
larger string stable regions for CAV’s feedback policies under
the controller (27). We here demonstrate the improvement of
the CAV’s capability in mitigating perturbations after “looking
behind” in both frequency domain and time domain. Consider
the scenario where there are two vehicles ahead and two
vehicle behind the CAV, i.e., m = 2, n = 2, as shown in Fig. 6.
The four cases in Table I are under specific investigation.
Note that the parameter setup in Table I represents different
V2V communication patterns, or different combinations of
HDVs that the CAV respond to. Precisely, in Cases A or B,
the CAV responds to one or two HDVs ahead, corresponding
to typical “looking ahead” only strategies, while in Cases C
or D, the CAV not only responds to the two HDVs ahead, but
also responds to one or two HDVs behind. The equilibrium
velocity is chosen as v∗ = 15.

Fig. 9. Frequency-domain response, i.e., magnitude of transfer function (28),
when n = m = 2. Parameter setups are shown in Table I. The magnitude
continues to decrease from HDV-only case to Case A to Case D especially at
low frequencies, indicating better dissipation of perturbations in traffic flow.

Fig. 10. Time-domain response, i.e., velocity profile of each vehicle, in the
nonlinear simulation when n = m = 2. (a) - (d) correspond to Case A to
Case D in Table I. The amplitude of velocity perturbations of the CAV and
two HDVs behind becomes smaller from (a) to (d), indicating that “looking
behind” appropriately improves the capability of the CAV in dampening
perturbations ahead.

First, the numerical value of the magnitude of the transfer
function (28) of the LCC system at various excitation fre-
quencies ω, i.e., |	( jω)| is illustrated in Fig. 9. When all the
vehicles are HDVs, the transfer function (28) has magnitude
larger than one among certain frequency range, indicating a
string unstable performance. After an explicit consideration of
surrounding HDVs in the LCC framework, the magnitude wit-
nesses an apparent drop from Case A to Case D. In particular,
after the extra incorporation of the vehicles behind (Cases C
and D), the magnitude of the transfer function (28) is smaller
than those of “looking ahead only” cases (Cases A and B),
especially at low excitation frequencies, indicating an even
better attenuation of perturbations in the traffic flow.

Then, we conduct time-domain simulations utilizing the
nonlinear OVM model (2) with four different connectivity
patterns shown in Table I. At the beginning of the simulation,
the traffic flow is in equilibrium state with a velocity of
15 m/s. From t = 20 s, the velocity of the head vehicle is
under a slight sinusoid perturbation. The velocity trajectories
of all the vehicles are shown in Fig. 10. As can be clearly
observed, the amplitude of the velocity fluctuations of the
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Fig. 11. Snapshots of the LCC system when a perturbation happens at the vehicle immediately behind the CAV, i.e., vehicle 1. The gray nodes and the blue
node represent the HDVs and the CAV, respectively. At each time moment, the upper panel demonstrates the result when the CAV makes no response to the
perturbation behind, representing typical “looking ahead” only strategies, while the lower panel demonstrates the result under the LCC framework. The deviation
of each node from the middle dashed line represents the velocity perturbation of each vehicle from the equilibrium velocity 15 m/s. (a) The result of the FD-LCC
system, where there is no vehicle ahead of the CAV. The control input is designed as u(t) = −0.5ṽ0(t) − 0.2s̃1(t) + 0.05ṽ1(t) − 0.1s̃2(t) + 0.05ṽ2(t). (b) The
result of the CF-LCC system, where there exists one single preceding vehicle, i.e., the head vehicle, which is represented by the black dot. The control input is
designed as u(t) = 0.1s̃0(t)−0.5ṽ0(t)−0.2s̃1(t)+0.05ṽ1(t)−0.1s̃2(t)+0.05ṽ2(t). A video demonstration can be found in https://github.com/soc-ucsd/LCC.

following vehicles becomes smaller from Case A to Case D
with more vehicles under incorporation in the LCC frame-
work. Consequently, both the frequency-domain and the time-
domain observations indicate that the degree to which the CAV
mitigates the perturbation coming from ahead becomes higher
after “looking behind” appropriately compared with “looking
ahead” only.

B. Leading the Motion of the Vehicles Behind

The previous experiment highlights the improvement of
LCC in mitigating the perturbations that happen ahead. This is
the prevailing perspective in many existing studies for “looking
ahead” strategies; see, e.g., [18], [20]. As discussed before,
LCC reveals the potential of CAVs in leading the motion of
the following HDVs and improving the performance of the
entire upstream traffic flow. Our second simulation aims to

highlight this distinctive feature of LCC systems. Specifically,
the two special LCC systems, FD-LCC and CF-LCC, are under
consideration. We consider the scenario where there are 10
HDVs behind the CAV, and the CAV responds to the motion
of the two of them — vehicle 1 and vehicle 2. We assume
that the HDV immediately behind the CAV, i.e., vehicle 1,
is under a sudden strong perturbation and observe how the
CAV in these two frameworks reacts to this perturbation that
happens behind.

At the beginning of the simulation, all the vehicles are
running at an initial equilibrium velocity of 15 m/s (v∗ = 15).
At t = 20 s, the HDV immediately behind the CAV brakes at
−5 m/s2 for one second. The snapshots of the whole system
at consecutive time moments are demonstrated in Fig. 11.
As shown in the upper panel at each time moment in Fig. 11,
when the CAV makes no response to the perturbations behind,
which is common in existing frameworks under “looking
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TABLE II

COMPARISON OF PERFORMANCE INDEXES

ahead” only strategies, the perturbation naturally propagates
upstream the traffic flow. Since there exist a finite number of
HDVs behind, this traffic wave is gradually dissipated by the
HDVs themselves.

In the two LCC systems, a static state feedback controller
is designed respectively for the CAV with the motion of two
HDVs behind under incorporation. Specifically, we design the
control input for FD-LCC as u(t) = −0.5ṽ0(t) − 0.2s̃1(t) +
0.05ṽ1(t) − 0.1s̃2(t) + 0.05ṽ2(t), and the control input of
CF-LCC as u(t) = 0.1s̃0(t)−0.5ṽ0(t)−0.2s̃1(t)+0.05ṽ1(t)−
0.1s̃2(t) + 0.05ṽ2(t). These choices are motivated by our
previous results in ring-road mixed traffic systems in [10],
[23]. As shown in the lower panel at each time moment
in Fig. 11, in both systems, the CAV makes an active response
to the perturbation behind. Precisely, when the HDV behind
brakes hard, the CAV also makes a slight deceleration, letting
the HDV behind easier to catch up with its own motion.
Consequently, the HDV behind would not accelerate to a high
velocity with a large deviation from the equilibrium (see, e.g.,
the moment at 25.0 s), reducing its velocity fluctuations. Thus,
the propagation of the traffic wave along the upstream traffic
flow is evidently dampened.

We further introduce two performance indexes to make
specific comparisons between the two LCC systems and “look-
ing ahead” only strategies. Precisely, an instantaneous fuel
consumption model proposed in [53] is utilized to calculate
the fuel consumption rate fi (mL/s) of the i -th vehicle, which
is given by

fi =



0.444 + 0.090 Rivi + [0.054 a2
i vi ]ai>0, if Ri > 0,

0.444, if Ri ≤ 0,

where Ri = 0.333 + 0.00108 v2
i + 1.200 ai with ai denoting

the acceleration of vehicle i . Then, we calculate the total fuel
consumption (FC) of all the vehicles throughout the simulation
from t = 20 s to t = 40 s. In addition, we also introduce
an index of average absolute velocity error (AAVE), which
is calculated by

�10
0

� 40
20 |vi (τ ) − v∗|dτ/20/11, to depict the

degree of velocity fluctuations in the simulation. The results
of the two indexes are presented in Table II. As can be clearly
observed, both the two LCC systems contribute to significant
improvement in fuel consumption and traffic smoothness for
the entire upstream traffic flow, compared with traditional
“looking ahead” only strategies, which typically make no
response to the traffic perturbations behind.

This result validates the effectiveness of LCC in incorporat-
ing the vehicles behind. Since the CAV could actively lead the
motion of the vehicles behind and improve the performance
of the upstream traffic flow, LCC further improves the CAV’s

capability in dampening traffic waves and smoothing traffic
flow, compared with traditional “looking ahead” only strate-
gies. Note that in CF-LCC, the CAV also catches up with the
head vehicle. Thus, CF-LCC allows the CAV to maintain the
same equilibrium spacing from the preceding vehicle.

VI. CONCLUSION

In this paper, we have introduced the notion of Leading
Cruise Control (LCC) for CAVs in mixed traffic flow. Based
on the dynamical model of the general LCC system and three
special cases, we have proved the controllability of the states
of the HDVs behind through the CAV’s active action, and
the observability of the states of the HDVs ahead through
direct measurement of the state of one individual vehicle.
Moreover, we investigate the head-to-tail string stability of
the proposed framework. These results reveal great potential
of incorporating the vehicles behind into CAV’s control. Our
LCC frameworks take full advantage of V2V connectivity
and vehicular automation, bringing further improvements to
mixed traffic systems where CAVs and HDVs coexist.

This paper has mainly focused on establishing the con-
cept of LCC and investigating its fundamental properties.
There are indeed many exciting future directions. First, note
that incorporating the information of upstream traffic might
decrease the original weight for maintaining the spacing
of the CAV from the preceding vehicle, and thus it is an
important topic to design constrained control strategies for
the CAV in LCC systems based on measurable output data
to achieve optimal and safe control, as widely discussed in
ACC [54] or vehicle platooning [55]. Considering that in real
traffic flow HDVs might have heterogeneous car-following
dynamics and reaction time, analyzing the influence of these
practical factors on the LCC performance is worth further
investigation. Some results has been discussed in CCC-related
works [17], [22]. In addition, extending the LCC frameworks
to the scenarios with cooperation of multiple CAVs in mixed
traffic flow deserves further investigation. Finally, validating
the potential of LCC via large-scale traffic simulations or real-
world experiments is another interesting research direction.
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[49] M. R. Jovanović and N. K. Dhingra, “Controller architectures: Tradeoffs
between performance and structure,” Eur. J. Control, vol. 30, pp. 76–91,
Jul. 2016.

[50] L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, “Spar-
sity invariance for convex design of distributed controllers,” IEEE Trans.
Control Netw. Syst., vol. 7, no. 4, pp. 1836–1847, Dec. 2020.

[51] K. Zhou et al., Robust and Optimal Control, vol. 40.
Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

[52] D. Swaroop and J. K. Hedrick, “String stability of interconnected
systems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 349–357,
Mar. 1996.

[53] D. P. Bowyer, R. Akçelik, and D. C. Biggs, Guide to Fuel Consumption
Analysis for Urban Traffic Management, no. 32. Vermont South, VIC,
Australia: ARRB Transport Research, 1985.

[54] S. Li, K. Li, R. Rajamani, and J. Wang, “Model predictive multi-
objective vehicular adaptive cruise control,” IEEE Trans. Control Syst.
Technol., vol. 19, no. 3, pp. 556–566, May 2010.

[55] Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed
model predictive control for heterogeneous vehicle platoons under
unidirectional topologies,” IEEE Trans. Control Syst. Technol, vol. 25,
no. 3, pp. 899–910, May 2016.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 19,2023 at 21:05:27 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TITS.2020.3002965
http://dx.doi.org/10.1098/rsta.2010.0205


12876 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

Jiawei Wang (Graduate Student Member, IEEE)
received the B.E. degree from Tsinghua Univer-
sity, Beijing, China, in 2018, where he is currently
pursuing the Ph.D. degree in mechanical engineer-
ing with the School of Vehicle and Mobility. His
research interests include connected automated vehi-
cles, distributed control and optimization, and data-
driven control. He was a recipient of the National
Scholarship in Tsinghua University. He received the
Best Paper Award at the 18th COTA International
Conference of Transportation Professionals.

Yang Zheng (Member, IEEE) received the B.E.
and M.S. degrees from Tsinghua University, Beijing,
China, in 2013 and 2015, respectively, and the
D.Phil. (Ph.D.) degree in engineering science from
the University of Oxford, U.K., in 2019.

He was a Research Associate with Imperial Col-
lege London. He was a Post-Doctoral Scholar in
SEAS and CGBC at Harvard University. He is
currently an Assistant Professor with the Department
of Electrical and Computer Engineering, UC San
Diego. His research interests include learning, opti-

mization, and control of network systems, and their applications to
autonomous vehicles and traffic systems.

Dr. Zheng was a finalist (coauthor) of the Best Student Paper Award at the
2019 ECC. He received the Best Student Paper Award at the 17th IEEE ITSC
in 2014, and the Best Paper Award at the 14th Intelligent Transportation
Systems Asia-Pacific Forum in 2015. He was a recipient of the National
Scholarship, Outstanding Graduate in Tsinghua University, the Clarendon
Scholarship at the University of Oxford, and the Chinese Government Award
for Outstanding Self-financed Students Abroad. He won the 2019 European
PhD Award on Control for Complex and Heterogeneous Systems.

Chaoyi Chen (Graduate Student Member, IEEE)
received the B.E. degree from Tsinghua University,
Beijing, China, in 2016, and the M.S. degree from
Tsinghua University and RWTH Aachen University,
Aachen, Germany, in 2019. He is currently pur-
suing the Ph.D. degree in mechanical engineering
with the School of Vehicle and Mobility, Tsinghua
University. His research interests include vehicu-
lar networks, control theory, and cooperative con-
trol. He was a recipient of the Scholarship of
Strategic Partnership RWTH Aachen University and

Tsinghua University.

Qing Xu received the B.S., M.S., and Ph.D.
degrees in automotive engineering from Beihang
University, Beijing, China, in 2006, 2008, and 2014,
respectively.

During his Ph.D. research, he worked as a Vis-
iting Scholar with the Department of Mechanical
Science and Engineering, University of Illinois at
Urbana–Champaign. From 2014 to 2016, he was
a Post-Doctoral Researcher with Tsinghua Univer-
sity, where he is currently working as an Assistant
Research Professor with the School of Vehicle and

Mobility. His main research interests include decision and control of intelligent
vehicles.

Keqiang Li received the B.Tech. degree from
Tsinghua University, Beijing, China, in 1985, and
the M.S. and Ph.D. degrees in mechanical engineer-
ing from Chongqing University, Chongqing, China,
in 1988 and 1995, respectively.

He is currently a Professor with the School of
Vehicle and Mobility, Tsinghua University. He is
leading the National Key Project on ICVs (Intel-
ligent and Connected Vehicles), China. He has
authored more than 200 articles. He is a co-inventor
of over 80 patents in China and Japan. His main

research interests include automotive control systems, driver assistance
systems, and networked dynamics and control.

Dr. Li has served as a fellow of the Society of Automotive Engineers of
China, editorial boards of the International Journal of Vehicle Autonomous
Systems, a Chairperson of Expert Committee of China Industrial Technology
Innovation Strategic Alliance for ICVs (CAICV), and a CTO of China
ICV Research Institute Company Ltd. (CICV). He was a recipient of
Changjiang Scholar Program Professor and the National Award for Tech-
nological Invention in China.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 19,2023 at 21:05:27 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


