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A B S T R A C T

Cooperative control of connected and automated vehicles (CAVs) promises smoother traffic
flow. In mixed traffic, where human-driven vehicles with unknown dynamics coexist, data-
driven predictive control techniques allow for CAV safe and optimal control with measurable
traffic data. However, the centralized control setting in most existing strategies limits their
scalability for large-scale mixed traffic flow. To address this problem, this paper proposes a
cooperative DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control) formulation and its
distributed implementation algorithm. In cooperative DeeP-LCC, the traffic system is naturally
partitioned into multiple subsystems with one single CAV, which collects local trajectory data
for subsystem behavior predictions based on the Willems’ fundamental lemma. Meanwhile,
the cross-subsystem interaction is formulated as a coupling constraint. Then, we employ the
Alternating Direction Method of Multipliers (ADMM) to design the distributed DeeP-LCC
algorithm. This algorithm achieves both computation and communication efficiency, as well as
trajectory data privacy, through parallel calculation. Our simulations on different traffic scales
verify the real-time wave-dampening potential of distributed DeeP-LCC, which can reduce fuel
consumption by over 31.84% in a large-scale traffic system of 100 vehicles with only 5%–20%
CAVs.

1. Introduction

Traffic instabilities, in the form of periodic acceleration and deceleration of individual vehicles, cause a great loss of travel
efficiency and fuel economy. This phenomenon, also known as traffic waves, is expected to be extensively eliminated with the
emergence of connected and automated vehicles (CAVs). Particularly, with the advances of vehicle automation and wireless
communications, CAV cooperative control promises system-wide traffic optimization and coordination, contributing to enhanced
traffic mobility. One typical technology is Cooperative Adaptive Cruise Control (CACC), which organizes a group of CAVs into a
single-lane platoon and maintains desired spacing and harmonized velocity, with dissipation of undesired traffic perturbations (Li
et al., 2017; Zheng et al., 2016; Milanés et al., 2013).

Despite the highly recognized potential of CAV cooperative control in both academy and industry, existing research mostly
focuses on the fully-autonomous scenario with pure CAVs. For real-world implementation, however, the transition phase of mixed
traffic with the coexistence of human-driven vehicles (HDVs) and CAVs may last for decades, making mixed traffic a more
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predominant pattern (Stern et al., 2018; Zheng et al., 2020b; Li et al., 2022). By explicitly considering the behavior of surrounding
HDVs that are under human control, recent research has revealed the potential of bringing significant traffic improvement with
only a few CAVs. Essentially, the CAVs can be utilized as mobile actuators for traffic control, leading to a recent notion of traffic
Lagrangian control (Stern et al., 2018; Vinitsky et al., 2018). In a closed ring-road setup, the seminal real-world experiment in Stern
et al. (2018), followed by a series of theoretical analysis (Xie et al., 2018; Wang et al., 2021b) and simulation reproductions (Wu
et al., 2021; Zheng et al., 2020a), reveals the capability of one single CAV in stabilizing the entire mixed traffic flow.

Along this direction, multiple strategies have been designed for traffic-oriented CAV control in mixed traffic flow. One typical
ethod is jam-absorption driving (JAD), which adjusts the CAV motion to leave enough inter-vehicle spacing for the traffic wave

o be dissipated (He et al., 2016; Nishi et al., 2013). By extending the typical CACC frameworks to the mixed traffic setup,
onnected Cruise Control (CCC) makes control decisions for one CAV at the tail by considering the motion of one or multiple HDVs
head (Orosz, 2016; Jin and Orosz, 2017). By enabling the CAV to respond to one HDV behind, the recent work in Molnár et al.
2020) proposes a closed-loop traffic control paradigm to stabilize the upstream traffic. Further, Leading Cruise Control (LCC) (Wang
t al., 2022a) extends the idea in Orosz (2016), Jin and Orosz (2017) and Molnár et al. (2020) to a more general case by incorporating
oth the HDVs behind and ahead of the CAV into the system framework, and indicates that one CAV can not only adapt to the
ownstream traffic flow as a follower, but also actively regulate the motion of the upstream traffic participants as a leader. The
forementioned work mostly focuses on the single-CAV case. When multiple CAVs coexist, the very recent work (Li et al., 2022)
eveals that rather than organizing all the CAVs into a platoon, one can allow CAVs to be naturally and arbitrarily distributed in
ixed traffic and apply cooperative control decisions, contributing to greater traffic benefits.

.1. Data-driven and distributed control for mixed traffic

Essentially, mixed traffic is a complex human-in-the-loop cyber-physical system. For longitudinal control of CAVs in mixed traffic,
ne typical approach is to employ the well-known car-following model, e.g., the optimal velocity model (OVM) (Bando et al., 1995)
nd the intelligent driver model (IDM) (Treiber et al., 2000), to describe the driving behavior of HDVs. Lumping the dynamics of
AVs and HDVs together, a parametric model of the entire mixed traffic system can be derived, allowing for model-based controller
esign. Based on CCC/LCC-type frameworks, multiple model-based methods have been employed to enable CAVs to dissipate traffic
aves, such as optimal control (Wang et al., 2021b; Jin and Orosz, 2017; Wang et al., 2021a), ∞ control (Zhou et al., 2020; Di Vaio

t al., 2019; Mousavi et al., 2021) and model predictive control (MPC) (Feng et al., 2021; Gong and Du, 2018; Guo and Jia, 2021).
hese model-based methods require prior knowledge of mixed traffic dynamics for controller synthesis and parameter tuning. In
ractical traffic flow, however, it is non-trivial to accurately identify the driving behavior of one particular HDV, which tends to be
ncertain and stochastic due to human nature.

To address this problem, model-free approaches that circumvent the model identification process in favor of data-driven
echniques have received increasing attention. Reinforcement learning (Vinitsky et al., 2018; Wu et al., 2021; Kreidieh et al., 2018)
nd adaptive dynamic programming (Gao et al., 2016; Huang et al., 2020), for example, have shown their potential in learning
AVs’ wave-dampening strategies in mixed traffic flow. Nevertheless, their lack of interpretability, sample efficiency and safety
uarantees remains of primal concern (Recht, 2019). On the other hand, by integrating learning methods with MPC – a prime
ethodology for constrained optimal control problems, data-driven predictive control techniques provide a significant opportunity

or reliable safe control with available data. Following this idea, several methods have been applied for CAV control in mixed traffic,
uch as data-driven reachability analysis (Lan et al., 2021) and Koopman operator theory (Zhan et al., 2022). Very recently, Data-
nablEd Predictive Leading Cruise Control (DeeP-LCC) (Wang et al., 2023a), which combines Data-EnablEd Predictive Control
DeePC) (Coulson et al., 2019a) with LCC (Wang et al., 2022a), directly utilizes measurable traffic data to design optimal CAV
ontrol inputs with collision-free considerations. Both small-scale traffic simulations (Wang et al., 2023a, 2022b) and real-world
iniature experiments (Wang et al., 2023b) have validated its capability in mitigating traffic waves and improving fuel economy.

Despite the effectiveness of the aforementioned model-free methods, one common issue that has significantly prohibited their
mplementation is the centralized control setting. A central unit is deployed to gather all the available data, and assign control actions
or each CAV. For large-scale mixed traffic systems with multiple CAVs and HDVs, this process is non-trivial to be completed during
he system’s sampling period given the potential delay in both wireless communications and online computations (Negenborn and
aestre, 2014). As discussed in Wang et al. (2023a), the number of offline pre-collected data samples for centralized DeeP-LCC

rows in a quadratic relationship when the traffic system scales up, leading to a dramatic increase in online computation burden.
oreover, due to the free joining or leaving maneuvers of individual vehicles (particularly those HDVs under human control), the

lexible structure of the mixed traffic system, i.e., the spatial formation and penetration rates of CAVs (Li et al., 2022), could raise
ignificant concerns about the excessive burden of recollecting traffic data and relearning CAV strategies.

As an alternative, distributed control and optimization techniques are believed to be more scalable and feasible for large-scale
raffic control. One particular method is the well-established Alternating Direction Method of Multipliers (ADMM) (Boyd et al.,
011), which separates a large-scale optimization problem into smaller pieces that are easier to handle. Thanks to its efficient
istributed optimization design with guaranteed convergence properties for convex problems, ADMM has seen wide applications in
ultiple areas, such as distributed learning (Huang et al., 2019), power control (Erseghe, 2014), and wireless communications (Zhou

t al., 2019). Given the multi-agent nature of traffic flow dynamics, which consists of the motion of multiple individual vehicles,
DMM has also been widely employed for CAV coordination in traffic flow, by solving local control problems and sharing

nformation via vehicle-to-vehicle (V2V) or vehicle-to-everything (V2X) interactions; see, e.g., Li et al. (2020), Zhang et al. (2021)
2

nd Li and De Schutter (2021). To our best knowledge, however, there has been limited research on data-driven distributed control
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Fig. 1. Schematic of centralized DeeP-LCC for CAVs in mixed traffic. (a) Centralized DeeP-LCC. DeeP-LCC collects the measurable data from the entire
mixed traffic system, including traffic output, control input of the CAVs, and reference input, i.e., the velocity error of the head vehicle. Then, it utilizes these
data to construct Hankel matrices for future trajectory predictions, and design the optimal future trajectory. More details can be found in Wang et al. (2023a).
(b) Mixed traffic scenario. The head vehicle is located at the beginning, indexed as 0, behind which there exist 𝑛 CAVs and 𝑚 HDVs. Between CAV 𝑖 and CAV
𝑖 + 1, there exist 𝑚𝑖 HDVs (𝑚𝑖 ≥ 0). (c) CF-LCC (Car-Following Leading Cruise Control) subsystem 𝑖, consisting of a leading CAV 𝑖 and the following 𝑚𝑖 HDVs.
More details can be found in Wang et al. (2022a, Section II-C).

for CAVs in the case of large-scale mixed traffic flow, with a very recent exception in Zhan et al. (2022), which combines Koopman
operator theory with ADMM. Rather than offline training a neural network as in Zhan et al. (2022), this paper aims to develop
ADMM-based data-driven distributed control algorithms through the well-established Willems’ fundamental lemma (Willems et al.,
2005), which directly relies on measurable data for online behavior predictions.

1.2. Contributions

Based on the centralized DeeP-LCC formulation (Wang et al., 2023a), this paper proposes a cooperative DeeP-LCC strategy for
CAVs in large-scale mixed traffic flow, and presents its distributed implementation algorithm via ADMM. As illustrated in Fig. 1(b),
we consider an arbitrary setup of mixed traffic pattern, where there might exist multiple CAVs and HDVs with arbitrary spatial
formations (Li et al., 2022). With local measurable data for each CAV and bidirectional topology (Zheng et al., 2016) in CAV
communications, our method allows CAVs to make cooperative control decisions to reduce traffic instabilities and mitigate traffic
waves in a distributed manner. No prior knowledge of HDVs’ driving dynamics are required, and safe and optimal guarantees are
achieved. Precisely, the contributions of this work are as follows.

We first present a cooperative DeeP-LCC formulation with local data for large-scale mixed traffic control. Instead of establishing
a data-centric representation for the entire mixed traffic system (Wang et al., 2023a), we naturally partition it into multiple CF-
LCC (Car-Following Leading Cruise Control) subsystems (Wang et al., 2022a), with one leading CAV and multiple HDVs following
behind (if they exist); see Fig. 1(c) for illustration of one CF-LCC subsystem. Each CAV directly utilizes measurable traffic data
from its own CF-LCC subsystem to design safe and optimal control behaviors. The interaction between neighboring subsystems
is formulated as a coupling constraint. In the case of linear dynamics with noise-free data, it is proved that cooperative DeeP-
LCC provides the identical optimal control performance compared with centralized DeeP-LCC (Wang et al., 2023a). For practical
implementation, however, cooperative DeeP-LCC requires considerably fewer local data for each subsystem.

We then propose a tailored ADMM based distributed implementation algorithm (distributed DeeP-LCC) to solve the cooperative
DeeP-LCC formulation. Particularly, we decompose the coupling constraint between neighboring CF-LCC subsystems by introducing
a new group of decision variables. In addition, via casting input/output constraints as trivial projection problems, the algorithm can
be implemented quite efficiently, leaving no explicit optimization problems to be numerically solved. A bidirectional information
flow topology – common in the pure-CAV platoon setting (Zheng et al., 2016) – is needed for the ADMM iterations. Each CF-LCC
subsystem exchanges only temporary computing data with its neighbors, contributing to V2V/V2X communication efficiency and
local trajectory data privacy.

Finally, we carry out two different scales of traffic simulations to validate the performance of distributed DeeP-LCC. The
moderate-scale experiment (15 vehicles with 5 CAVs) shows that distributed DeeP-LCC could cost much less computing time than
centralized DeeP-LCC, with a suboptimal performance in smoothing traffic flow. The experiment on the large-scale mixed traffic
system (100 vehicles with 5% − 20% CAVs), where the computation time for centralized DeeP-LCC is completely unacceptable,
further verifies the capability and scalability of distributed DeeP-LCC in real-time mitigating traffic waves, saving over 31.84% fuel
consumption.

1.3. Paper organization and notations

The rest of this paper is organized as follows. Section 2 presents the input/output data of mixed traffic flow, and Section 3 briefly
reviews the previous results on centralized DeeP-LCC. Section 4 presents the cooperative DeeP-LCC formulation, and Section 5
3
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t

provides a tailored ADMM based distributed DeeP-LCC algorithm. Traffic simulations are discussed in Sections 6, and 7 concludes
his paper.
Notation: We denote N as the set of all natural numbers, N𝑗

𝑖 as the set of natural numbers in the range of [𝑖, 𝑗] with 𝑖 ≤ 𝑗, 0𝑛 as a
zero vector of size 𝑛, 0𝑚×𝑛 as a zero matrix of size 𝑚×𝑛, and 𝐼𝑛 as an identity matrix of size 𝑛×𝑛. For a vector 𝑎 and a symmetric positive
definite matrix 𝑋, ‖𝑎‖2𝑋 denotes the quadratic form 𝑎⊤𝑋𝑎. Given vectors 𝑎1, 𝑎2,… , 𝑎𝑚, we denote col(𝑎1, 𝑎2,… , 𝑎𝑚) =

[

𝑎⊤1 , 𝑎
⊤
2 ,… , 𝑎⊤𝑚

]⊤.
Given matrices of the same column size 𝐴1, 𝐴2,… , 𝐴𝑚, we denote col(𝐴1, 𝐴2,… , 𝐴𝑚) =

[

𝐴⊤
1 , 𝐴

⊤
2 ,… , 𝐴⊤

𝑚
]⊤. Denote diag(𝑥1,… , 𝑥𝑚) as

a diagonal matrix with 𝑥1,… , 𝑥𝑚 on its diagonal entries, and diag(𝐷1,… , 𝐷𝑚) as a block-diagonal matrix with matrices 𝐷1,… , 𝐷𝑚
on its diagonal blocks. Finally, ⊗ represents the Kronecker product.

2. Input/output definition of mixed traffic flow

Consider a general single-lane mixed traffic system shown in Fig. 1(b), where there exist one head vehicle, 𝑛 CAVs, and 𝑚 HDVs.
The head vehicle, indexed as vehicle 0, represents the vehicle immediately ahead of the first CAV. The CAVs are indexed as 1, 2,… , 𝑛
from front to end. Behind CAV 𝑖 (𝑖 ∈ N𝑛

1), there might exist 𝑚𝑖 (𝑚𝑖 ≥ 0, ∑𝑛
𝑖=1 𝑚𝑖 = 𝑚) HDVs, and they are indexed as 1(𝑖), 2(𝑖),… , 𝑚(𝑖)

𝑖
in sequence. We introduce the following notations for the set consisting of vehicle indices—𝛺: all the vehicles; N𝑛

1: all the CAVs;  :
all the HDVs; 𝑖: those HDVs following behind CAV 𝑖. Precisely, we have

𝑖 = {1(𝑖), 2(𝑖),… , 𝑚(𝑖)
𝑖 }, 𝑖 ∈ N𝑛

1;  = 1 ∪ 2 ∪⋯ ∪ 𝑛; 𝛺 = N𝑛
1 ∪  .

Note that HDV 𝑚(𝑖)
𝑖 (if it exists) is the vehicle immediately ahead of CAV 𝑖 + 1, 𝑖 ∈ N𝑛−1

1 , and HDV 𝑚(𝑛)
𝑛 represents the last vehicle

in this mixed traffic system. It is assumed in this paper that all the vehicles, including CAVs and HDVs, are connected to the
V2X communication network. Particularly, the velocity signal of the HDVs can be acquirable by the cloud unit in the centralized
framework, or the CAVs in the distributed framework. Nevertheless, all the results can be generalized to the case where partial
HDVs have connected capabilities, which will be discussed later.

2.1. Definition for input, output and state

We first specify the measurable output signals in the mixed traffic system. Denote the velocity and spacing of vehicle 𝑖 (𝑖 ∈ 𝛺)
at time 𝑡 as 𝑣𝑖(𝑡) and 𝑠𝑖(𝑡), respectively. To achieve wave mitigation in mixed traffic, the CAVs need to stabilize the traffic flow
at a certain equilibrium state, where each vehicle moves with an identical equilibrium velocity 𝑣∗, i.e., 𝑣𝑖(𝑡) = 𝑣∗, 𝑖 ∈ 𝛺, whilst
maintaining an equilibrium spacing 𝑠∗. Here for simplicity, we use a homogeneous value 𝑠∗, but it could be varied for different
vehicles.

Define the error states, including velocity errors 𝑣̃𝑖(𝑡) and spacing errors 𝑠̃𝑖(𝑡) from the equilibrium, as follows

𝑣̃𝑖(𝑡) = 𝑣𝑖(𝑡) − 𝑣∗, 𝑠̃𝑖(𝑡) = 𝑠𝑖(𝑡) − 𝑠∗, 𝑖 ∈ 𝛺. (1)

It is worth noting that in practice, not all the error states in (1) are directly measurable. The raw data from V2X communications
are mostly absolute position and velocity signals. To estimate the equilibrium velocity 𝑣∗ and obtain the velocity errors 𝑣̃𝑖(𝑡), 𝑖 ∈ 𝛺,
one approach is to utilize the average historical velocity of the head vehicle (Wang et al., 2023b; Ge and Orosz, 2018). For the
equilibrium spacing 𝑠∗, this value for the HDVs is generally unknown and even time-varying; in contrast, the equilibrium spacing for
the CAVs is designed by users, similarly to the desired spacing in typical CACC systems (Li et al., 2017). Accordingly, by appropriate
design of the equilibrium spacing, the spacing errors for the CAVs 𝑠̃𝑖(𝑡), 𝑖 ∈ N𝑛

1 can be obtained. In this paper, we assume that the
velocity of all the vehicles can be acquired via V2X communication, and the spacing of all the CAVs can be obtained via on-board
sensors. Then, the measurable signals are lumped into the aggregate output vector 𝑦(𝑡) of the mixed traffic system, given by

𝑦(𝑡) = col
(

𝑦1(𝑡), 𝑦2(𝑡),… , 𝑦𝑛(𝑡)
)

∈ R2𝑛+𝑚, (2)

where

𝑦𝑖(𝑡) =
[

𝑣̃𝑖(𝑡), 𝑣̃1(𝑖) (𝑡),… , 𝑣̃𝑚(𝑖)
𝑖
(𝑡), 𝑠̃𝑖(𝑡)

]⊤
∈ R𝑚𝑖+2, 𝑖 ∈ N𝑛

1. (3)

This output 𝑦(𝑡) contains the velocity errors of all the vehicles and the spacing errors of only the CAVs. Regarding the spacing errors
of the HDVs, some existing studies typically assume that these signals are also acquirable; see, e.g., Zheng et al. (2020b), Jin and
Orosz (2017), Di Vaio et al. (2019), Gao et al. (2016) and Huang et al. (2020). Then, they consider the underlying state vector,
defined as

𝑥(𝑡) = col
(

𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡)
)

∈ R2𝑛+2𝑚, (4)

where

𝑥𝑖(𝑡) =
[

𝑣̃𝑖(𝑡), 𝑣̃1(𝑖) (𝑡),… , 𝑣̃𝑚(𝑖)
𝑖
(𝑡), 𝑠̃𝑖(𝑡), 𝑠̃1(𝑖) (𝑡),… , 𝑠̃𝑚(𝑖)

𝑖
(𝑡)
]⊤

∈ R2+2𝑚𝑖 , 𝑖 ∈ N𝑛
1, (5)

and design state-feedback control strategies. This is impractical since the equilibrium spacing of the HDVs is indeed unknown in
real traffic flow. In addition, note that the state (4) and the output (2) are transformed from those in Wang et al. (2023a) via row
4

permutation, which has no influence on the fundamental system properties, such as controllability and observability.
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We next introduce the input signals in mixed traffic control. Denote the control input of each CAV as 𝑢𝑖(𝑡), 𝑖 ∈ N𝑛
1, which could

e the desired or actual acceleration of the CAVs (Zheng et al., 2020b; Jin and Orosz, 2017; Huang et al., 2020). Lumping all the
AVs’ control inputs, we define the aggregate control input of the entire mixed traffic system as

𝑢(𝑡) =
[

𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑛(𝑡)
]⊤ ∈ R𝑛. (6)

inally, the velocity error of the head vehicle from the equilibrium velocity 𝑣∗ is regarded as an external reference input signal
(𝑡) ∈ R into the mixed traffic system, given by

𝜖(𝑡) = 𝑣̃0(𝑡) = 𝑣0(𝑡) − 𝑣∗ ∈ R. (7)

.2. Parametric model of mixed traffic flow

Based on the definitions of system state (4), input (6), (7) and output (2), model-based strategies from the literature (Jin and
rosz, 2017; Zheng et al., 2020b; Wang et al., 2021b; Zhou et al., 2020) typically establish a parametric mixed traffic model for
AV controller design. They rely on a car-following model, e.g., IDM (Kesting et al., 2010) or OVM (Bando et al., 1995), to describe
he driving dynamics of HDVs, whose general form can be written as

𝑣̇𝑖(𝑡) = 𝐹𝑖
(

𝑠𝑖(𝑡), 𝑠̇𝑖(𝑡), 𝑣𝑖(𝑡)
)

, 𝑖 ∈  , (8)

where 𝑠̇𝑖(𝑡) = 𝑣𝑖−1(𝑡) − 𝑣𝑖(𝑡) denotes the relative velocity of HDV 𝑖, and function 𝐹𝑖(⋅) represents the car-following dynamics of the
HDV index as 𝑖. In general, the HDVs have heterogeneous behaviors, which indicates that 𝐹𝑖(⋅) could be different for different HDVs.

ssume that the CAVs’ acceleration is utilized as the control input, i.e.,

𝑣̇𝑖(𝑡) = 𝑢𝑖(𝑡), 𝑖 ∈ N𝑛
1. (9)

hrough linearization around equilibrium (𝑣∗, 𝑠∗), a linearized state-space model for the mixed traffic system can be obtained via
ombining the driving dynamics (8) and (9) of each individual vehicle, which is in the form of Wang et al. (2023a) and Wang et al.
2022b)

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) +𝐻𝜖(𝑘),

𝑦(𝑘) = 𝐶𝑥(𝑘),
(10)

where 𝐴,𝐵, 𝐶,𝐻 are system matrices of compatible dimensions; see Wang et al. (2023a, Section II) for a specific representation
under the LCC framework with a homogeneous assumption for the HDV behaviors, i.e., the function 𝐹𝑖(⋅) in (8) is the same for all
he HDVs.

In real traffic flow, the human driving dynamics (8) for individual vehicles are non-trivial to identify. Thus, the mixed traffic
odel (10) is practically unknown. To address this problem, the recently proposed DeeP-LCC method circumvents the necessity

f identifying an HDV’s car-following dynamics; instead, it employs a data-centric non-parametric representation from input/output
raffic data for behavior prediction and controller design. This method directly relies on the collected data, and the following
efinition of persistent excitation (Willems et al., 2005) is needed.

efinition 1. Let 𝑇 , 𝑙 ∈ N and 𝑙 ≤ 𝑇 . Define the Hankel matrix of order 𝑙 for the signal sequence 𝜔 = col(𝜔(1), 𝜔(2), … , 𝜔(𝑇 )) as

𝑙(𝜔) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝜔(1) 𝜔(2) ⋯ 𝜔(𝑇 − 𝑙 + 1)
𝜔(2) 𝜔(3) ⋯ 𝜔(𝑇 − 𝑙 + 2)
⋮ ⋮ ⋱ ⋮

𝜔(𝑙) 𝜔(𝑙 + 1) ⋯ 𝜔(𝑇 )

⎤

⎥

⎥

⎥

⎥

⎦

. (11)

e call 𝜔 persistently exciting of order 𝑙 if the Hankel matrix 𝑙(𝜔) has full row rank.

. Review of centralized DeeP-LCC formulation

In this section, we briefly introduce the DeeP-LCC strategy from Wang et al. (2023a) and Wang et al. (2022b), which is
ormulated in a centralized control setting, as illustrated in Fig. 1(a). Essentially, DeeP-LCC is adapted from the standard DeePC
ethod (Coulson et al., 2019a), which has seen wide applications in multiple fields, such as quadcopter systems (Elokda et al.,
021), power grids (Huang et al., 2021), and building control (Lian et al., 2023).

.1. Data-centric representation of mixed traffic flow

For the data-centric representation of the mixed traffic system (10), we begin by collecting an input/output data sequence of
ength 𝑇 from this system:
entralized Data:

𝑢d = col
(

𝑢d(1), 𝑢d(2),… , 𝑢d(𝑇 )
)

∈ R𝑛𝑇 , (12a)

𝜖d = col
(

𝜖d(1), 𝜖d(2),… , 𝜖d(𝑇 )
)

∈ R𝑇 , (12b)
5
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𝑦d = col
(

𝑦d(1), 𝑦d(2),… , 𝑦d(𝑇 )
)

∈ R(2𝑛+𝑚)𝑇 . (12c)

Then, let 𝑇ini, 𝑁 ∈ N (𝑇ini +𝑁 ≤ 𝑇 ), and define
[

𝑈p
𝑈f

]

∶= 𝑇ini+𝑁 (𝑢d),
[

𝐸p
𝐸f

]

∶= 𝑇ini+𝑁 (𝜖d),
[

𝑌p
𝑌f

]

∶= 𝑇ini+𝑁 (𝑦d), (13)

where 𝑈p and 𝑈f consist of the first 𝑇ini block rows and the last 𝑁 block rows of 𝑇ini+𝑁 (𝑢d), respectively (similarly for 𝐸p, 𝐸f
and 𝑌p, 𝑌f ). The partition in (13) separates each column in the data Hankel matrix, which is a consecutive data sequence of length
𝑇ini +𝑁 , into 𝑇ini-length past data and 𝑁-length future data.

Assumption 1 (Persistent Excitation in a Centralized Setup). The pre-collected control input data sequence 𝑢d is persistently exciting
of order 𝑇ini +𝑁 + 2𝑛 + 2𝑚.

Given the persistent excitation of pre-collected data and the controllability and observability assumption for the underlying
system (see Wang et al. (2023a, Theorem 1) for a mild condition in the linearized setup), we have the following data-centric
representation of mixed traffic behavior.

Lemma 1 (Wang et al. (2023a, Proposition 2)). Let 𝑡 ∈ N be the current time, and denote the most recent 𝑇ini-length past control input
sequence 𝑢ini and the future 𝑁-length control input sequence 𝑢 as

𝑢ini = col
(

𝑢(𝑡 − 𝑇ini), 𝑢(𝑡 − 𝑇ini + 1),… , 𝑢(𝑡 − 1)
)

, (14a)

𝑢 = col (𝑢(𝑡), 𝑢(𝑡 + 1),… , 𝑢(𝑡 +𝑁 − 1)) , (14b)

respectively (similarly for 𝜖ini, 𝜖 and 𝑦ini, 𝑦). By Assumption 1 and a controllability and observability assumption for the underlying system,
the sequence col(𝑢ini, 𝜖ini, 𝑦ini, 𝑢, 𝜖, 𝑦) is a (𝑇ini +𝑁)-length trajectory of the linearized mixed traffic system (10), if and only if there exists a
vector 𝑔 ∈ R𝑇−𝑇ini−𝑁+1, such that

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈p
𝐸p
𝑌p
𝑈f
𝐸f
𝑌f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢ini
𝜖ini
𝑦ini
𝑢
𝜖
𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

If 𝑇ini ≥ 2𝑛 + 2𝑚, 𝑦 is uniquely determined from (15), ∀(𝑢ini, 𝜖ini, 𝑦ini, 𝑢, 𝜖).

This lemma is adapted from the well-established Willems’ fundamental lemma (Willems et al., 2005) and standard DeePC (Coul-
son et al., 2019a), which reveals that any valid trajectory of a controllable linear time-invariant (LTI) system can be constructed by
a finite number of input/output data samples, provided sufficiently rich inputs during data collection. DeeP-LCC applies this result
to mixed traffic control and replaces the need for a parametric mixed traffic model (10) or identification process for human’s driving
behaviors. Furthermore, this result allows for future behavior prediction for 𝑦 under an assumed future input 𝑢 and reference input
𝜖, given pre-collected traffic data (𝑢d, 𝜖d, 𝑦d) and the most recent past trajectory (𝑢ini, 𝜖ini, 𝑦ini). Similar adaptations can also be found
in recent work on power systems (Huang et al., 2021) and building control (Lian et al., 2023).

3.2. Centralized formulation of DeeP-LCC

We utilize the non-parametric representation (15) for predictive control of CAVs in mitigating traffic waves in mixed traffic.
Define

𝑉 (𝑦, 𝑢) =
𝑡+𝑁−1
∑

𝑘=𝑡

(

‖𝑦(𝑘)‖2𝑄 + ‖𝑢(𝑘)‖2𝑅
)

(16)

as the cost function for the future trajectory from time 𝑡 to time 𝑡 + 𝑁 − 1, which penalizes the traffic output and CAVs’ control
inputs with weight coefficients 𝑄 and 𝑅, respectively. Precisely, define 𝑤𝑣, 𝑤𝑠, 𝑤𝑢 > 0 as the weight coefficients for velocity errors,
spacing errors and control inputs, respectively, and we have

𝑄 = diag(𝑄1, 𝑄2,… , 𝑄𝑛), (17)

where

𝑄𝑖 = diag(

𝑚𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜔𝑣, 𝜔𝑣,… , 𝜔𝑣, 𝜔𝑠), 𝑖 ∈ N𝑛

1, (18)

and

𝑅 = diag(

𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜔 , 𝜔 ,… , 𝜔 ). (19)
6
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Then, we formulate the following optimization problem for predictive control of the linearized mixed traffic system (10) with
noise-free data (12):
Centralized Linear DeeP-LCC:

min
𝑔,𝑢,𝑦

𝑉 (𝑢, 𝑦) (20a)

subject to (15), (20b)

𝜖 = 𝜖, (20c)

𝑢 ∈  , 𝑦 ∈  , (20d)

where 𝑢 ∈  , 𝑦 ∈  represent the input/output constraints, and 𝜖 ∈ R𝑁 denotes the estimation of the future reference input sequence
𝜖.

In practical traffic flow, the consistency of the non-parametric behavior representation (15) is usually compromised due to data
noise and HDVs’ nonlinear and non-deterministic behavior. Thus, the original optimization problem (20) might have no feasible
solutions. The following regularized version is proposed to obtain optimal control for CAVs in practical traffic flow (Wang et al.,
2023a):
Centralized DeeP-LCC:

min
𝑔,𝑢,𝑦,𝜎𝑦

𝐽 (𝑦, 𝑢, 𝑔, 𝜎𝑦) (21a)

subject to

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈p
𝐸p
𝑌p
𝑈f
𝐸f
𝑌f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢ini
𝜖ini
𝑦ini
𝑢
𝜖
𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
𝜎𝑦
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (21b)

𝜖 = 𝜖, (21c)

𝑢 ∈  , 𝑦 ∈  , (21d)

with

𝐽 (𝑦, 𝑢, 𝑔, 𝜎𝑦) = 𝑉 (𝑢, 𝑦) + 𝜆𝑔 ‖𝑔‖
2
2 + 𝜆𝑦

‖

‖

‖

𝜎𝑦
‖

‖

‖

2

2
, (22)

where 𝜎𝑦 ∈ R(𝑛+𝑚)𝑇ini is a slack variable to ensure feasibility, and a sufficiently large weight coefficient 𝜆𝑦 > 0 is introduced for
penalization in the cost function, which allows for 𝜎𝑦 ≠ 0 only if the equality constraint (15) is infeasible. A two-norm penalty on 𝑔
with 𝜆𝑔 > 0 is also included in the cost function to avoid over-fitting of noisy data, and this regulation has been shown to coincide
with distributional two-norm robustness (Huang et al., 2021; Coulson et al., 2019b).

Remark 1. DeeP-LCC requires a centralized cloud unit to collect data (12) and 𝑢ini, 𝜖ini, 𝑦ini of the entire mixed traffic system and
assign control inputs for all the CAVs via solving the centralized optimization problem (21). Both traffic simulations (Wang et al.,
2023a) and real-world tests (Wang et al., 2023b) have validated its potential in mitigating traffic waves in a moderate-scale setup. In
larger-scale traffic flow, however, the computation time in solving (21) would soon become intolerable for real-time implementation,
and the communication constraints and flexible structures of mixed traffic patterns would also limit the practical application.

4. Cooperative DeeP-LCC

In this section, we first introduce the partition design of the entire mixed traffic system into CF-LCC subsystems, and present
local DeeP-LCC for each CF-LCC subsystem. Then, we show the cooperative DeeP-LCC formulation by coupling each CF-LCC
subsystems, and present the theoretical analysis of the relationship between cooperative DeeP-LCC and centralized DeeP-LCC.

4.1. CF-LCC subsystem partition and local DeeP-LCC

Recall the general mixed traffic system with 𝑛 CAVs and 𝑚 HDVs as shown in Fig. 1(b). The centralized DeeP-LCC formulation
utilizes input/output data (12) of the entire mixed traffic system to describe the traffic behavior, neglecting its inherent dynamics
structure. Indeed, the mixed traffic system can be naturally partitioned into 𝑛 subsystems, consisting of CAV 𝑖 and its following 𝑚𝑖
HDVs represented by 𝑖 = {1(𝑖), 2(𝑖),… , 𝑚(𝑖)

𝑖 }, 𝑖 ∈ N𝑛
1; see Fig. 2 for demonstration. This subsystem is named as CF-LCC (Car-Following

LCC) in Wang et al. (2022a), where one single CAV is leading the motion of the HDVs behind, whilst following a vehicle immediately
ahead, which is HDV 𝑚(𝑖−1)

𝑖−1 (or CAV 𝑖− 1 if 𝑖−1 = ∅). If 𝑚𝑖 = 0 for some 𝑖, i.e., CAV 𝑖 has no following HDVs but CAV 𝑖+ 1 instead,
this CAV itself stands as an independent CF-LCC subsystem. In addition to our partition strategy, there exist alternative approaches

(𝑖−1) (𝑖−1)
7

for managing mixed traffic flow at scale. For instance, one can also group the HDVs ahead (indexed from 1 to 𝑚𝑖−1 ) and the
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Fig. 2. Schematic of partition of the entire mixed traffic system and cooperative DeeP-LCC. Each CF-LCC system consists of CAV 𝑖 and its following HDVs,
where the CAV monitors the motion of those following HDVs and also the HDV immediately ahead, i.e., HDV 𝑚(𝑖−1)

𝑖−1 ; see the gray solid arrows. In cooperative
DeeP-LCC, only local data are needed to design the future behavior of each subsystem. Note that a bidirectional information flow typology (represented by
blue dashed arrows) is designed for data exchange between neighboring CF-LCC systems, which will be detailed in Section 4.

following CAV (indexed as 𝑖) into a subsystem; see, e.g., Di Vaio et al. (2019) and Zhan et al. (2022). It has been shown in Wang
et al. (2022a) that in a linearized subsystem containing one CAV, the states of the HDVs behind are controllable with respect to the
CAV’s input, making them explicit targets for optimization. However, the HDVs ahead of CAV 𝑖 are not under its direct influence
(but CAV 𝑖 − 1 instead) and primarily serve to inform predictions about ahead traffic conditions.

In the following we focus on each CF-LCC subsystem 𝑖, which, compared to the general one in Fig. 1(b), is essentially a smaller-size
mixed traffic system with one head vehicle (HDV 𝑚(𝑖−1)

𝑖−1 ), one CAV 𝑖, and 𝑚𝑖 HDVs. Therefore, the previous DeeP-LCC formulation
can be directly applied to this subsystem. Precisely, for CF-LCC subsystem 𝑖 at time 𝑡, define system output as 𝑦𝑖(𝑡) in (3), which
contains the velocity errors of CAV 𝑖 and the following HDVs in 𝑖, and denote the control input as 𝑢𝑖(𝑡), consistent with the
corresponding entry in (6). Additionally, we introduce

𝜖𝑖(𝑡) = 𝑣̃𝑚(𝑖−1)
𝑖−1

(𝑡) = 𝑣𝑚(𝑖−1)
𝑖−1

(𝑡) − 𝑣∗ ∈ R, (23)

as the reference input, which is the velocity error of the vehicle immediately ahead of CAV 𝑖. Note that 𝜖1 is consistent with 𝜖 in (7),
representing the velocity error of the head vehicle at the very beginning of the entire mixed traffic system, i.e., vehicle 0.

Similarly to (10), through linearization around equilibrium, a state–space model can be derived for each CF-LCC subsystem, in
the form of

{

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) +𝐻𝑖𝜖𝑖(𝑘),
𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘),

(24)

where 𝐴𝑖, 𝐵𝑖,𝐻𝑖, 𝐶𝑖 are system matrices of compatible dimensions; see Wang et al. (2022a, Section II-C) for a specific expression.

In practice, however, the system model might be unknown. Following the process in centralized DeeP-LCC, we can also obtain a
data-centric representation for each CF-LCC subsystem. Precisely, collect an input/output data sequence of length 𝑇𝑖 ∈ N for CF-LCC
subsystem 𝑖:
Local Data:

𝑢d𝑖 = col
(

𝑢d𝑖 (1), 𝑢
d
𝑖 (2),… , 𝑢d𝑖 (𝑇𝑖)

)

∈ R𝑇𝑖 , (25a)

𝜖d𝑖 = col
(

𝜖d𝑖 (1), 𝜖
d
𝑖 (2),… , 𝜖d𝑖 (𝑇𝑖)

)

∈ R𝑇𝑖 , (25b)

𝑦d𝑖 = col
(

𝑦d𝑖 (1), 𝑦
d
𝑖 (2),… , 𝑦d𝑖 (𝑇𝑖)

)

∈ R(𝑚𝑖+2)𝑇𝑖 . (25c)

These data sequences are utilized to construct data Hankel matrices 𝑈𝑖,p, 𝑈𝑖,f , 𝐸𝑖,p, 𝐸𝑖,f , 𝑌𝑖,p, 𝑌𝑖,f by a similar procedure in (13), with
a same time horizon 𝑇ini and 𝑁 .

With these pre-collected data for each subsystem, we have the following result motivated by Lemma 1.

Assumption 2 (Persistent Excitation in a Distributed Setup). The pre-collected control input data sequence 𝑢d𝑖 for each CF-LCC
subsystem 𝑖, 𝑖 ∈ N𝑛

1 is persistently exciting of order 𝑇ini +𝑁 + 2 + 2𝑚𝑖.

Corollary 1. Following the definition in (14), for CF-LCC subsystem 𝑖 at the current time 𝑡, denote the most recent 𝑇ini-length past trajectory
and the future 𝑁-length trajectory as 𝑢𝑖,ini, 𝜖𝑖,ini, 𝑦𝑖,ini and 𝑢𝑖, 𝜖𝑖, 𝑦𝑖, respectively. By Assumption 2 and a controllability and observability
assumption for the underlying system, the sequence col(𝑢 , 𝜖 , 𝑦 , 𝑢 , 𝜖 , 𝑦 ) is a (𝑇 + 𝑁)-length trajectory of the linearized CF-LCC
8

𝑖,ini 𝑖,ini 𝑖,ini 𝑖 𝑖 𝑖 ini
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subsystem (24), if and only if there exists a vector 𝑔𝑖 ∈ R𝑇𝑖−𝑇ini−𝑁+1, such that

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑖,p
𝐸𝑖,p
𝑌𝑖,p
𝑈𝑖,f
𝐸𝑖,f
𝑌𝑖,f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑔𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑖,ini
𝜖𝑖,ini
𝑦𝑖,ini
𝑢𝑖
𝜖𝑖
𝑦𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

f 𝑇ini ≥ 2 + 2𝑚𝑖, 𝑦𝑖 is uniquely determined from (26), ∀(𝑢𝑖,ini, 𝜖𝑖,ini, 𝑦𝑖,ini, 𝑢𝑖, 𝜖𝑖).

Based on the data-centric representation of CF-LCC subsystem, we can naturally present the local formulation of DeeP-LCC,
otivated by (20).
ocal Linear DeeP-LCC:

min
𝑢𝑖 ,𝑦𝑖

𝑉𝑖(𝑢𝑖, 𝑦𝑖) (27a)

subject to (26), (27b)

𝜖𝑖 = 𝜖𝑖, (27c)

𝑢𝑖 ∈ 𝑖, 𝑦𝑖 ∈ 𝑖, (27d)

here

𝑉𝑖(𝑢𝑖, 𝑦𝑖) =
𝑡+𝑁−1
∑

𝑘=𝑡

(

‖

‖

𝑦𝑖(𝑘)‖‖
2
𝑄𝑖

+ ‖

‖

𝑢𝑖(𝑘)‖‖
2
𝜔𝑢

)

. (28)

n (27), 𝜖𝑖 denotes the estimation of the future reference input, and 𝑢𝑖 ∈ 𝑖, 𝑦𝑖 ∈ 𝑖 represent the input/output constraints for
ubsystem 𝑖. It is assumed that the input/output constraints for the CF-LCC subsystems are consistent with those for the entire
ixed traffic system, i.e., we have

𝑢 ∈  , 𝑦 ∈  ⟺ 𝑢𝑖 ∈ 𝑖, 𝑦𝑖 ∈ 𝑖, ∀𝑖 ∈ N𝑛
1. (29)

.2. Cooperative DeeP-LCC via coupling constraints

In problem (27), each CAV relies only on the local data for controller design. Inside the CF-LCC subsystem, each CAV needs
o monitor the motion of the following HDVs and the motion of the vehicle immediately ahead; see the gray arrows in Fig. 2.
articularly, the control objective is limited to improving the performance of the local CF-LCC subsystem. Despite the possible
apability in mitigating traffic waves by applying (27) to each CAV in mixed traffic, a noncooperative behavior is expected, and
hus the resulting performance might be compromised. Moreover, an accurate estimation of 𝜖𝑖 is always non-trivial.

Necessary information exchange is needed to coordinate the control tasks between each CF-LCC subsystem in the mixed traffic
low. Indeed, as shown in (23), one of the output signals of subsystem 𝑖 (the velocity error of the last HDV 𝑚(𝑖)

𝑖 ) acts as the reference
nput of subsystem 𝑖+1 (the velocity error of the vehicle ahead of CAV 𝑖+1). Therefore, each CF-LCC subsystem 𝑖+1 could receive the
redicted output signal 𝑦𝑖 from CF-LCC subsystem 𝑖, and utilizes this signal to construct the estimation of future external reference
̂𝑖+1; see Fig. 3(b) for illustration. Precisely, we have

𝜖𝑖+1 = 𝑣̃𝑚(𝑖)
𝑖

= 𝐾𝑖𝑦𝑖, 𝑖 ∈ N𝑛−1
1 , (30)

here

𝐾𝑖 = 𝐼𝑁 ⊗
[

01×𝑚𝑖
1 0

]

.

his information exchange between CF-LCC subsystems 𝑖 and 𝑖 + 1 facilitates a coordination behavior between neighboring
subsystems. Specifically, we can sum up the local optimization problem in (27) and introduce (30) as a coupling constraint. Then,
the following cooperative DeeP-LCC formulation can be established for the entire linearized mixed traffic system with noise-free
ata.
ooperative Linear DeeP-LCC:

min
𝑔𝑖 ,𝑢𝑖 ,𝑦𝑖
(𝑖∈N𝑛1)

𝑛
∑

𝑖=1
𝑉𝑖(𝑢𝑖, 𝑦𝑖) (31a)

subject to (26), 𝑖 ∈ N𝑛
1, (31b)

𝜖1 = 𝜖, (31c)

𝜖𝑖+1 = 𝐾𝑖𝑦𝑖, 𝑖 ∈ N𝑛−1
1 , (31d)

𝑢𝑖 ∈ 𝑖, 𝑦𝑖 ∈ 𝑖, 𝑖 ∈ N𝑛
1, (31e)
9
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Fig. 3. Schematic for comparison between centralized DeeP-LCC and cooperative DeeP-LCC. The magenta arrow denotes the fact that one output signal 𝜖𝑖+1
from the subsystem 𝑖 ahead acts as the reference input into the subsystem 𝑖 + 1 behind. The blue dashed arrows represent the bidirectional information flow
topology between neighboring subsystems, which will be detailed in Section 4.

where the cost function is a summation of the local cost of each subsystem in the local formulation (27). Solving the cooperative
DeeP-LCC formulation (31) provides a cooperative behavior for all the subsystems. Comparing the cooperative formulation (31)
with the local formulation (27), there only exists one estimation for the reference input of the head vehicle (vehicle 0) for subsystem
1, as shown in (31c), which is consistent with (20c) in the centralized formulation (20). In addition, the information exchange (31d)
acts as a coupling constraint in the optimization problem (31).

Remark 2. Fig. 3 illustrates the comparison between centralized DeeP-LCC and cooperative DeeP-LCC. In centralized DeeP-LCC,
all the inputs and outputs are stacked together for behavior representation. In cooperative DeeP-LCC, by contrast, we partition
the original large-scale system into multiple CF-LCC subsystems, and the local input and output data are collected for local system
representation. Indeed, we assume the prior knowledge of system structure: one output signal from each subsystem 𝑖 acts as the
reference input 𝜖𝑖+1 into the subsystem 𝑖 + 1 behind, as described in (30).

Remark 3. In this paper, we assume that all the HDVs are connected to the V2X network. It is worth noting that DeeP-LCC
directly relies on the input/output trajectory data for controller design, and when partial HDVs are connected, the measurable
output signal will be changed. Indeed, it can be intuitively known from Fig. 3 that the lowest connectivity requirement is that the
HDV immediately ahead of each CAV, which is indexed as 𝑚(𝑖)

𝑖 , 𝑖 ∈ N𝑛
1 (i.e., the HDV at the tail of each CF-LCC subsystem 𝑖), must be

connected. In this case, the output definition in (3) is degraded to 𝑦𝑖(𝑡) =
[

𝑣̃𝑖(𝑡), 𝑣̃𝑚(𝑖)
𝑖
(𝑡), 𝑠̃𝑖(𝑡)

]⊤
∈ R3, 𝑖 ∈ N𝑛

1. As shown in Wang et al.
(2022a, Corollary 3), this output contains the least information to guarantee the observability of each CF-LCC system. In addition, it
ensures that the reference signal 𝜖𝑖+1, which is exactly the velocity error of HDV 𝑚(𝑖)

𝑖 , can be acquired by the subsystem 𝑖+1. Based
on this lowest connectivity requirement, the cooperative DeeP-LCC problem (31) can still be solved for control input design.

4.3. Relationship between cooperative and centralized formulations

We proceed to analyze the relationship between the cooperative formulation (31) and the centralized formulation (20) in the
linearized case with noise-free data. The following assumption is needed on the consistency between the data collected from the
two formulations. The result is summarized in Theorem 1, and the proof can be found in Appendix A.

Assumption 3 (Data Consistency). A same trajectory sequence of mixed traffic flow is under consideration for centralized DeeP-
LCC and cooperative DeeP-LCC in offline data collection. In other words, an appropriate partition of the centralized data sequence
in (12) leads to the local data sequence in (25).

Theorem 1. Let Assumption 3 hold and 𝑇𝑖 = 𝑇 , 𝑖 ∈ N𝑛
1. Given time 𝑡, the same LTI mixed traffic system with no noise, and a same past

trajectory before time 𝑡, denote (𝑔∗, 𝑢∗, 𝑦∗) as the optimal solution of centralized linear DeeP-LCC problem (20), and (𝑔∗𝑖 , 𝑢
∗
𝑖 , 𝑦

∗
𝑖 ), 𝑖 ∈ N𝑛

1
as the optimal solution of cooperative linear DeeP-LCC problem (31). Then, it holds that

𝑛
∑

𝑉𝑖(𝑢∗𝑖 , 𝑦
∗
𝑖 ) = 𝑉 (𝑢∗, 𝑦∗). (32)
10

𝑖=1
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Theorem 1 reveals that for the noise-free and LTI mixed traffic system with the same offline pre-collected data and online
ast trajectories, cooperative linear DeeP-LCC (31) could achieve the identical optimal system-wide stabilizing performance (16)
ompared to centralized linear DeeP-LCC (20). Besides this equivalent optimal behavior, cooperative DeeP-LCC (31) also allows
or distributed optimization, which will be detailed in the next section. In addition, fewer pre-collected data points are needed
or cooperative DeeP-LCC, which are collected and stored locally in each CAV. Precisely, to satisfy Assumption 1 for centralized
eeP-LCC, the lower bound for the length of centralized data (12) is given by

𝑇 ≥ (𝑛 + 1)(𝑇ini +𝑁 + 2𝑚 + 2𝑛) − 1, (33)

while in Assumption 2 for cooperative DeeP-LCC, the minimum length for local data (25) is reduced to

𝑇𝑖 ≥ 2(𝑇ini +𝑁 + 2𝑚𝑖 + 2) − 1, 𝑖 ∈ N𝑛
1. (34)

4.4. Final design for cooperative DeeP-LCC

Considering a practical mixed traffic setup with nonlinear and non-deterministic behavior and noise-corrupted data, we introduce
the following regularized cost function motivated by the design (22) in centralized DeeP-LCC

𝐽𝑖(𝑔𝑖, 𝑢𝑖, 𝑦𝑖, 𝜎𝑦𝑖 ) = 𝑉𝑖(𝑦𝑖, 𝑢𝑖) + 𝜆𝑔𝑖
‖

‖

𝑔𝑖‖‖
2
2 + 𝜆𝑦𝑖

‖

‖

‖

𝜎𝑦𝑖
‖

‖

‖

2

2
, (35)

where 𝜎𝑦𝑖 ∈ R(1+𝑚𝑖)𝑇ini , 𝑖 ∈ N𝑛
1 are slack variables to ensure feasibility, and 𝜆𝑦𝑖 , 𝜆𝑔𝑖 > 0, 𝑖 ∈ N𝑛

1 are weight coefficients for
regularization. Then, similarly to the final centralized DeeP-LCC formulation (21), the following regularized version of cooperative
DeeP-LCC is provided
Cooperative DeeP-LCC:

min
𝑔𝑖 ,𝑢𝑖 ,𝑦𝑖 ,𝜎𝑦𝑖

𝑖∈N𝑛1

𝑛
∑

𝑖=1
𝐽𝑖(𝑔𝑖, 𝑢𝑖, 𝑦𝑖, 𝜎𝑦𝑖 ) (36a)

subject to

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑖,p
𝐸𝑖,p
𝑌𝑖,p
𝑈𝑖,f
𝐸𝑖,f
𝑌𝑖,f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑔𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑖,ini
𝜖𝑖,ini
𝑦𝑖,ini
𝑢𝑖
𝜖𝑖
𝑦𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
𝜎𝑦𝑖
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑖 ∈ N𝑛
1, (36b)

𝜖1 = 𝜖, (36c)

𝜖𝑖+1 = 𝐾𝑖𝑦𝑖, 𝑖 ∈ N𝑛−1
1 , (36d)

𝑢𝑖 ∈ 𝑖, 𝑦𝑖 ∈ 𝑖, 𝑖 ∈ N𝑛
1. (36e)

his is the finalized formulation for cooperative DeeP-LCC that could be applied to CAV control in practical mixed traffic flow. As
hown in the numerical simulations in Wang et al. (2023a) and the field experiments (Wang et al., 2023b), the estimation of the
uture velocity error of the head vehicle can be chosen as

𝜖 = 0𝑁 , (37)

hich, combined with a moderate estimation of equilibrium velocity, contributes to satisfactory traffic performance. For the
nput/output constraints, given the actuation limit for vehicle longitudinal dynamics, the input constraints 𝑢𝑖 ∈ 𝑖 are designed
s

𝑎min ≤ 𝑢𝑖 ≤ 𝑎max, 𝑖 ∈ N𝑛
1, (38)

here 𝑎min and 𝑎max denote the minimum and the maximum acceleration, respectively. In addition, an upper bound 𝑠̃max and a lower
ound 𝑠̃min are imposed on the spacing error of each CAV, given by

𝑠̃min ≤ 𝑠̃𝑖 ≤ 𝑠̃max, 𝑖 ∈ N𝑛
1, (39)

or CAV collision-free guarantees and a practical consideration that the CAV would not leave an extremely large spacing from the
receding vehicle. Note that 𝑠̃min = 𝑠min−𝑠∗, 𝑠̃max = 𝑠max−𝑠∗ with 𝑠min, 𝑠max denoting the minimum and maximum spacing respectively.

This constraint (39) on the spacing errors is captured by the output constraint, formulated as

𝑠̃min ≤ 𝑃𝑖𝑦𝑖 ≤ 𝑠̃max, 𝑖 ∈ N𝑛
1, (40)

with
[

0 1
] 𝑛
11
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Remark 4. Based on the design for the cost function (35) and the input/output constraints (38)–(40), the final cooperative
eeP-LCC problem (36) is a quadratic programming (QP), which is convex and can also be directly solved by a QP solver

in a centralized manner just like the centralized DeeP-LCC problem (21). Different from the centralized version, however,
he cooperative formulation requires local traffic data (25), which is easier to be obtained, and further allows for distributed
ptimization, leading to efficient computation for large-scale traffic flow. This will be detailed in the following section. Additionally,
ccording to the equivalence property in Theorem 1, given LTI mixed traffic systems with noise-free data, the feasibility of the
ooperative formulation is consistent with that of the centralized one, which is essentially an adapted formulation from standard
eePC (Coulson et al., 2019a). We refer the interested readers to Berberich et al. (2020, Proposition 1) for theoretical guarantees
n recursive feasibility of DeePC under terminal constraints for stabilizing the system and bounded assumptions on the slacking
ariable and the noise level.

. Distributed implementation via ADMM for cooperative DeeP-LCC

In the cooperative DeeP-LCC problem (36), the coupling constraint arises from the interaction, i.e., information exchange,
between the neighboring CF-LCC subsystems. In this section, we present a tailored ADMM based distributed algorithm to solve this
problem.

5.1. Review of ADMM

We first review the basics of the ADMM algorithm (Boyd et al., 2011). By slight abuse of notations, the symbols are used for
corresponding representations only in this subsection. Given two groups of decision variables 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑚 and convex functions
𝑓 and ℎ, ADMM aims at solving a composite optimization problem of the form

min
𝑥,𝑦

𝑓 (𝑥) + ℎ(𝑦) (41a)

subject to 𝐴𝑥 + 𝐵𝑦 = 𝑐, (41b)

where 𝐴 ∈ R𝑝×𝑛, 𝐵 ∈ R𝑝×𝑚, 𝑐 ∈ R𝑝. The augmented Lagrangian of problem (41) is defined as

𝐿𝜌(𝑥, 𝑦, 𝜇) = 𝑓 (𝑥) + ℎ(𝑦) + 𝜇⊤(𝐴𝑥 + 𝐵𝑦 − 𝑐) +
𝜌
2
‖𝐴𝑥 + 𝐵𝑦 − 𝑐‖22 , (42)

where 𝜌 > 0 denotes a penalty parameter. Then, using ADMM to solve (41) yields the following iterations:

𝑥+ = argmin
𝑥

𝐿𝜌(𝑥, 𝑦, 𝜇) (43a)

𝑦+ = argmin
𝑦

𝐿𝜌(𝑥+, 𝑦, 𝜇) (43b)

𝜇+ = 𝜇 + 𝜌(𝐴𝑥+ + 𝐵𝑦+ − 𝑐), (43c)

where 𝑥+, 𝑦+, 𝜇+ denotes the update of iterate 𝑥, 𝑦, 𝜇. One can clearly observe that ADMM is a primal–dual optimization algorithm,
i.e., it consists of an 𝑥-minimization step and a 𝑦-minimization step for primal update, and a dual variable update for 𝜇. As discussed
in Boyd et al. (2011), ADMM guarantees convergence for convex optimizations under mild conditions, and in practice only a few
tens of iterations are needed for modest accuracy.

5.2. Decomposable formulation of cooperative DeeP-LCC

To apply ADMM, we need to reformulate the cooperative DeeP-LCC problem (36) with two groups of decision variables and
separated cost functions as shown in (41). According to the data-centric behavior representation in (36b), we have the following
equality constraint for 𝑔𝑖

[

𝑈𝑖,p
𝐸𝑖,p

]

𝑔𝑖 =
[

𝑢𝑖,ini
𝜖𝑖,ini

]

, 𝑖 ∈ N𝑛
1, (44)

and the other variables can be represented by (𝑖 ∈ N𝑛
1)

𝜎𝑦𝑖 = 𝑌𝑖,p𝑔𝑖 − 𝑦𝑖,ini, 𝑢𝑖 = 𝑈𝑖,f𝑔𝑖, 𝜖𝑖 = 𝐸𝑖,f𝑔𝑖, 𝑦𝑖 = 𝑌𝑖,f𝑔𝑖, 𝑠̃𝑖 = 𝑃𝑖𝑌𝑖,f𝑔𝑖.

Regarding 𝑔𝑖 as the only decision variable in the cost function 𝐽𝑖(𝑔𝑖, 𝑢𝑖, 𝑦𝑖, 𝜎𝑦𝑖 ) in (36a), Problem (36) can be converted to

min
𝑔𝑖

𝑖∈N𝑛1

𝑛
∑

𝑖=1
𝑓𝑖(𝑔𝑖) (45a)

subject to
[

𝑈𝑖,p
𝐸𝑖,p

]

𝑔𝑖 =
[

𝑢𝑖,ini
𝜖𝑖,ini

]

, 𝑖 ∈ N𝑛
1, (45b)

𝐸 𝑔 = 0 , (45c)
12
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𝐸𝑖+1,f𝑔𝑖+1 = 𝐾𝑖𝑌𝑖,f𝑔𝑖, 𝑖 ∈ N𝑛−1
1 , (45d)

𝑃𝑖𝑌𝑖,f𝑔𝑖 = 𝑠̃𝑖, 𝑖 ∈ N𝑛
1, (45e)

𝑈𝑖,f𝑔𝑖 = 𝑢𝑖, 𝑖 ∈ N𝑛
1, (45f)

𝑠̃min ≤ 𝑠̃𝑖 ≤ 𝑠̃max, 𝑖 ∈ N𝑛
1, (45g)

𝑎min ≤ 𝑢𝑖 ≤ 𝑎max, 𝑖 ∈ N𝑛
1, (45h)

where

𝑓𝑖(𝑔𝑖) ∶= 𝑔⊤𝑖 𝑄𝑔𝑖𝑔𝑖 + 2𝑐⊤𝑔𝑖𝑔𝑖 + 𝜆𝑦𝑖𝑦
⊤
𝑖,ini𝑦𝑖,ini,

with

𝑄𝑔𝑖 = 𝑌 ⊤
𝑖,f𝑄𝑖𝑌𝑖,f + 𝑈⊤

𝑖,f𝑅𝑖𝑈𝑖,f + 𝜆𝑔𝑖𝐼 + 𝜆𝑦𝑖𝑌
⊤
𝑖,p𝑌𝑖,p, 𝑐𝑔𝑖 = −𝜆𝑦𝑖𝑌

⊤
𝑖,p𝑦𝑖,ini.

We proceed to show how to further simplify and decompose the optimization problem (45), by treating 𝑔𝑖 as one group of
ariables and establishing the other one. The equality constraints for 𝑔𝑖 in (45b) and (45c) are incorporated into the domain of
unction 𝑓𝑖(𝑔𝑖), which is given by

𝐃𝐨𝐦(𝑓𝑖) =
{

𝑔𝑖|𝐴𝑔𝑖𝑔𝑖 = 𝑏𝑔𝑖
}

, (46)

here

𝐴𝑔1 =
⎡

⎢

⎢

⎣

𝑈1,p
𝐸1,p
𝐸1,f

⎤

⎥

⎥

⎦

, 𝑏𝑔1 =
⎡

⎢

⎢

⎣

𝑢1,ini
𝜖1,ini
0𝑁

⎤

⎥

⎥

⎦

; 𝐴𝑔𝑖 =
[

𝑈𝑖,p
𝐸𝑖,p

]

, 𝑏𝑔𝑖 =
[

𝑢𝑖,ini
𝜖𝑖,ini

]

, 𝑖 ∈ N𝑛
2.

The constraint (45d) depicts the coupling relationship between 𝑔𝑖 and 𝑔𝑖+1, which is not desired for ADMM. To decompose it,
e introduce

𝑔𝑖 = 𝑧𝑖, 𝑖 ∈ N𝑛
1, (47)

nd then the coupling constraint can be converted to

𝐸𝑖+1,f𝑔𝑖+1 = 𝐾𝑖𝑌𝑖,f𝑧𝑖, 𝑖 ∈ N𝑛−1
1 . (48)

he physical interpretation of this newly introduced variable 𝑧𝑖 is that it represents the assumed value of 𝑔𝑖 for subsystem 𝑖 + 1.
ombining (47) and (48) leads to the equality constraint for the 𝑔𝑖 group and 𝑧𝑖 group variables.

The equality constraints (45e) and (45f) hold for the 𝑔𝑖 group and 𝑠̃𝑖, 𝑢𝑖 group variables, respectively, which are already
ecomposed. However, the existence of the inequality constraints (45g) and (45h) makes it time-consuming to solve the minimization
roblem for the augmented Lagrangian at each iteration step of ADMM, which requires a quadratic programming solver for numerical
omputation. To address this issue, we capture the inequality constraints (45g) and (45h) by the indicator functions1 contained in
he objective function. Precisely, we define

ℎ𝑖(𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖) = 𝑠(𝑠̃𝑖) + 𝑢(𝑢𝑖), (49)

here 𝑠(𝑠𝑖),𝑢(𝑢𝑖) are the indicator functions over the sets

𝑠 = {𝑠̃ ∈ R𝑁
|𝑠̃min ≤ 𝑠̃ ≤ 𝑠̃max}, 𝑢 = {𝑢 ∈ R𝑁

|𝑎min ≤ 𝑢 ≤ 𝑎max},

espectively.
Now, problem (45) can be rewritten as the following decomposable formulation.

ecomposable Cooperative DeeP-LCC:

min
𝑔𝑖 ,𝑧𝑖 ,𝑠̃𝑖 ,𝑢𝑖
𝑖∈N𝑛1

𝑛
∑

𝑖=1

(

𝑓𝑖(𝑔𝑖) + ℎ𝑖(𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖)
)

(50a)

subject to 𝑔𝑖 = 𝑧𝑖, 𝑖 ∈ N𝑛
1, (50b)

𝐸𝑖+1,f𝑔𝑖+1 = 𝐾𝑖𝑌𝑖,f𝑧𝑖, 𝑖 ∈ N𝑛−1
1 , (50c)

𝑃𝑖𝑌𝑖,f𝑔𝑖 = 𝑠̃𝑖, 𝑖 ∈ N𝑛
1, (50d)

𝑈𝑖,f𝑔𝑖 = 𝑢𝑖, 𝑖 ∈ N𝑛
1, (50e)

ith two sets of decision variables (𝑔1,… , 𝑔𝑛) and (𝑧1,… , 𝑧𝑛, 𝑠̃1,… , 𝑠̃𝑛, 𝑢1,… , 𝑢𝑛), corresponding to the decision variables 𝑥 and 𝑦
respectively in the standard form (41), as well as separated objective functions ∑𝑛

𝑖=1 𝑓𝑖(𝑔𝑖), 𝑔𝑖 ∈ 𝐃𝐨𝐦(𝑓𝑖) and ∑𝑛
𝑖=1 ℎ𝑖(𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖). In the

following section, we will elaborate how to tailor ADMM to solve (50).

1 The indicator function (𝑥) over the set  is defined as (𝑥) = 0 for 𝑥 ∈  and (𝑥) = +∞ otherwise.
13
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5.3. Distributed algorithm for cooperative DeeP-LCC

Now we are ready to present the distributed optimization algorithm based on ADMM to solve Problem (50). In particular, we
aim to design a distributed optimization algorithm, where each CAV serves as the computing unit and communication node of each
CF-LCC subsystem. The algorithm is presented as follows.

First, the augmented Lagrangian of Problem (50) is given by

𝐿 =
𝑛
∑

𝑖=1
𝐿(1)(𝑔𝑖, 𝑧𝑖) +

𝑛−1
∑

𝑖=1
𝐿(2)(𝑔𝑖+1, 𝑧𝑖) +

𝑛
∑

𝑖=1
𝐿(3)(𝑔𝑖, 𝑠̃𝑖) +

𝑛
∑

𝑖=1
𝐿(4)(𝑔𝑖, 𝑢𝑖), (51)

here

𝐿(1)(⋅) = 𝑓𝑖(𝑔𝑖) + 𝜇⊤
𝑖 (𝑔𝑖 − 𝑧𝑖) +

𝜌
2
‖

‖

𝑔𝑖 − 𝑧𝑖‖‖
2
2 (52a)

𝐿(2)(⋅) = 𝜂⊤𝑖 (𝐸𝑖+1,f𝑔𝑖+1 −𝐾𝑖𝑌𝑖,f𝑧𝑖) +
𝜌
2
‖

‖

𝐸𝑖+1,f𝑔𝑖+1 −𝐾𝑖𝑌𝑖,f𝑧𝑖‖‖
2
2 (52b)

𝐿(3)(⋅) = 𝑠(𝑠𝑖) + 𝜙⊤
𝑖 (𝑠𝑖 − 𝑃𝑖𝑌𝑖,f𝑔𝑖) +

𝜌
2
‖

‖

𝑠𝑖 − 𝑃𝑖𝑌𝑖,f𝑔𝑖‖‖
2
2 (52c)

𝐿(4)(⋅) = 𝑢(𝑢𝑖) + 𝜃⊤𝑖 (𝑢𝑖 − 𝑈𝑖,f𝑔𝑖) +
𝜌
2
‖

‖

𝑢𝑖 − 𝑈𝑖,f𝑔𝑖‖‖
2
2 , (52d)

with 𝜇𝑖, 𝜂𝑖, 𝜙𝑖, 𝜃𝑖 denoting the dual variables for the equality constraints (50b)–(50e) respectively.
Then, the algorithm consists of the following three steps.

Step 1: Parallel Optimization to Update 𝑔𝑖: We obtain 𝑔+𝑖 by minimizing 𝐿 in (51) over 𝑔𝑖

𝑔+𝑖 = argmin
𝑔𝑖∈𝐃𝐨𝐦(𝑓𝑖)

𝐿(1)(𝑔𝑖, 𝑧𝑖) + 𝐿(3)(𝑔𝑖, 𝑠̃𝑖) + 𝐿(4)(𝑔𝑖, 𝑢𝑖) + 𝐿(2)(𝑔𝑖, 𝑧𝑖−1)
|

|

|

|𝑖∈N𝑛
2

= argmin
𝑔𝑖∈𝐃𝐨𝐦(𝑓𝑖)

𝑔⊤𝑖 𝐻𝑔𝑖𝑔𝑖 + 2𝑞⊤𝑔𝑖𝑔𝑖,
(53)

where the coefficients 𝐻𝑔𝑖 , 𝑞𝑔𝑖 are given by

𝐻𝑔𝑖 =𝑌
⊤
𝑖,f𝑄𝑖𝑌𝑖,f + 𝑈⊤

𝑖,f𝑅𝑖𝑈𝑖,f + 𝜆𝑔𝑖𝐼 + 𝜆𝑦𝑖𝑌
⊤
𝑖,p𝑌𝑖,p +

𝜌
2
(𝐼 + 𝑌 ⊤

𝑖,f𝑃
⊤
𝑖 𝑃𝑖𝑌𝑖,f + 𝑈⊤

𝑖,f𝑈𝑖,f ) +
(𝜌
2
𝐸⊤
𝑖,f𝐸𝑖,f

)

|

|

|

|𝑖∈N𝑛
2

𝑞𝑔𝑖 =
1
2

(

𝜇𝑖𝐼 − 𝜌𝑧𝑖 − 𝑌 ⊤
𝑖,f𝑃

⊤
𝑖 𝜙𝑖 − 𝑈⊤

𝑖,f𝜃𝑖 − 𝜌𝑌 ⊤
𝑖,f𝑃

⊤
𝑖 𝑠̃𝑖 − 𝜌𝑈⊤

𝑖,f𝑢𝑖
)

− 𝜆𝑦𝑖𝑌
⊤
𝑖,p𝑦𝑖,ini +

1
2
𝐸⊤
𝑖,f 𝜂̄𝑖−1

|

|

|

|𝑖∈N𝑛
2

,

ith

𝜂̄𝑖 = 𝜂𝑖 − 𝜌𝐾𝑖𝑌𝑖,f𝑧𝑖, 𝑖 ∈ N𝑛−1
1 . (54)

ince 𝐃𝐨𝐦(𝑓𝑖) is an equality constrained set, the update (53) involves solving the following KKT (Karush–Kuhn–Tucker) system
[

𝐻𝑔𝑖 𝐴⊤
𝑔𝑖

𝐴𝑔𝑖 0

]

[

𝑔+𝑖
𝜈

]

=
[

−𝑞𝑔𝑖
𝑏𝑔𝑖

]

, (55)

here 𝜈 denotes a Lagrangian multiplier. Since 𝐻𝑔𝑖 and 𝐴𝑔𝑖 consist of only pre-collected data and pre-determined parameters,
he KKT matrix in (55) (the left-hand multiplier) is fixed during the entire online control process. Thus, the KKT matrix can be
re-factorized before online predictive control, and 𝑔+𝑖 can be calculated from (55) quite efficiently. Precisely, we have

[

𝑔+𝑖
𝜈

]

= −𝛹𝑖

[

𝑞𝑔𝑖
−𝑏𝑔𝑖

]

, 𝑖 ∈ N𝑛
1, (56)

here

𝛹𝑖 =

[

𝐻𝑔𝑖 𝐴⊤
𝑔𝑖

𝐴𝑔𝑖 0

]−1

s pre-calculated before the control process.

tep 2: Parallel Optimization to Update 𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖: We obtain 𝑧+𝑖 , 𝑠̃
+
𝑖 , 𝑢

+
𝑖 by minimizing 𝐿 in (51) over 𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖, where 𝑔𝑖 adopts the

pdated value in the previous step. Precisely,

𝑧+𝑖 = argmin
𝑧𝑖

𝐿(1)(𝑔+𝑖 , 𝑧𝑖) + 𝐿(2)(𝑔+𝑖+1, 𝑧𝑖)
|

|

|

|𝑖∈N𝑛−1
1

= argmin
𝑧𝑖

𝑧⊤𝑖 𝐻𝑧𝑖𝑧𝑖 + 2𝑞⊤𝑧𝑖𝑧𝑖 = −𝐻−1
𝑧𝑖

𝑞𝑧𝑖 (57a)

𝑠̃+𝑖 = argmin
𝑠̃𝑖

𝐿(3)(𝑔+𝑖 , 𝑠̃𝑖) = argmin
𝑠̃𝑖

𝑠(𝑠̃𝑖) + 𝜙⊤
𝑖 𝑠̃𝑖 +

𝜌
2
‖

‖

‖

𝑠̃𝑖 − 𝑃𝑖𝑌𝑖,f𝑔
+
𝑖
‖

‖

‖

2

2
= 𝛱𝑠 (𝑃𝑖𝑌𝑖,f𝑔

+
𝑖 −

𝜙𝑖
𝜌
) (57b)

𝑢+𝑖 = argmin
𝑢𝑖

𝐿(4)(𝑔+𝑖 , 𝑢𝑖) = argmin
𝑢𝑖

𝑢(𝑢𝑖) + 𝜃⊤𝑖 𝑢𝑖 +
𝜌
2
‖

‖

‖

𝑢𝑖 − 𝑈𝑖,f𝑔
+
𝑖
‖

‖

‖

2

2
= 𝛱𝑢 (𝑈𝑖,f𝑔

+
𝑖 −

𝜃𝑖
𝜌
), (57c)
14
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Fig. 4. Exchange of computing data in distributed DeeP-LCC. In each iteration, the values 𝜂̄𝑖 , 𝜖+𝑖 defined in (54) and (58) are locally calculated in CAV 𝑖 and
then sent to the corresponding receiver.

where the coefficients in (57a) are given by

𝐻𝑧𝑖 =
𝜌
2
𝐼 +

(𝜌
2
𝑌 ⊤
𝑖,f𝐾

⊤
𝑖 𝐾𝑖𝑌𝑖,f

)

|

|

|

|𝑖∈N𝑛−1
1

, 𝑞𝑧𝑖 = −
𝜇𝑖
2

−
𝜌𝑔+𝑖
2

− 𝑌 ⊤
𝑖,f𝐾

⊤
𝑖

(

𝜂𝑖
2

+
𝜌𝜖+𝑖+1
2

)

|

|

|

|𝑖∈N𝑛−1
1

,

with

𝜖+𝑖 = 𝐸𝑖,f𝑔
+
𝑖 , 𝑖 ∈ N𝑛

2. (58)

In (57b) and (57c), 𝛱 denotes the projection (in the Euclidean norm) onto the set . Note that similarly to 𝛹𝑖 in (56), 𝐻−1
𝑧𝑖

can be
pre-calculated before the online control process. It is also worth noting that 𝑠 and 𝑢 are simple box constrained sets with upper
and lower bounds on each entry of the vector, and thus it is trivial to calculate the projections (57b) and (57c).

Step 3: Update Dual Variables: We update the dual variables 𝜇+
𝑖 , 𝜂

+
𝑖 , 𝜙

+
𝑖 , 𝜃

+
𝑖 by

𝜇+
𝑖 =𝜇𝑖 + 𝜌(𝑔+𝑖 − 𝑧+𝑖 ), 𝑖 ∈ N𝑛

1, (59a)

𝜂+𝑖 =𝜂𝑖 + 𝜌(𝜖+𝑖+1 −𝐾𝑖𝑌𝑖,f𝑧
+
𝑖 ), 𝑖 ∈ N𝑛−1

1 , (59b)

𝜙+
𝑖 =𝜙𝑖 + 𝜌(𝑠̃+𝑖 − 𝑃𝑖𝑌𝑖,f𝑔

+
𝑖 ), 𝑖 ∈ N𝑛

1, (59c)

𝜃+𝑖 =𝜃𝑖 + 𝜌(𝑢+𝑖 − 𝑈𝑖,f𝑔
+
𝑖 ), 𝑖 ∈ N𝑛

1. (59d)

This tailored ADMM algorithm solving cooperative DeeP-LCC (36) in a distributed manner is summarized in Algorithm 1,
named as distributed DeeP-LCC algorithm. Each CAV 𝑖 locally makes calculations in parallel and exchanges necessary data with
its neighbors 𝑖 − 1 and 𝑖 + 1. In particular, this algorithm includes only simple numerical calculations, without any optimization problem
to be solved. The convergence proofs of ADMM are available in Boyd et al. (2011, Appendix A) and the references therein. The
stopping criterion is presented in Appendix B. Note that distributed DeeP-LCC is implemented in a receding horizon manner as
time moves forward, similarly to the centralized DeeP-LCC method (Wang et al., 2023a). In addition, given time 𝑡, the optimal
values of the variables 𝑔𝑖, 𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖, 𝜇𝑖, 𝜂𝑖, 𝜙𝑖, 𝜃𝑖 are utilized as their initial values for the ADMM iterations at time 𝑡 + 1, as shown in
line 16 at Algorithm 1.

Remark 5 (Information Flow, Communication Efficiency and Data Privacy). For distributed DeeP-LCC implementation, each CAV 𝑖
serves as the computing unit and communication node for CF-LCC subsystem 𝑖. Inside the subsystem, it monitors the motion of
the following HDVs and the HDV immediately ahead for trajectory data; see the gray solid arrows in Fig. 2. Meanwhile, CAV 𝑖
exchanges computing data with its neighboring CAVs 𝑖−1 and 𝑖+1; see Fig. 4 for illustration of data exchange during the iterations.
This cross-subsystem information flow topology, represented as blue dashed arrows in Fig. 2, is known as bidirectional topology
in pure-CAV platoons (Zheng et al., 2016). It is worth noting that during each iteration, equivalently an information exchange via
V2X communications, only two short vectors of computing data 𝜂̄𝑖, 𝜖+𝑖 ∈ R𝑁 defined in (54) and (58) need to be transmitted to the
corresponding receiver. These vectors can be computed locally and transmitted efficiently, requiring low communication resources.
Moreover, the pre-collected trajectory data, contained in data Hankel matrices (𝑈𝑖,p, 𝑈𝑖,f , 𝐸𝑖,p, 𝐸𝑖,f , 𝑌𝑖,p, 𝑌𝑖,f ), are well preserved in
each local subsystem, contributing to data privacy.

Remark 6 (Practical Deployment of Distributed DeeP-LCC ). Current commercial V2X communication technologies, such as DSRC
or IEEE 802.11p (Kenney, 2011), have limited communication frequencies. In the distributed DeeP-LCC algorithm, multiple
information exchanges can occur in one control step due to the iterations. To use commercial V2X equipment for the algorithm, one
can run it for only one or two iterations, leading to limited performance degradation when the traffic flow is far from constraint
boundaries. Step 1 in the algorithm solves an unconstrained DeeP-LCC problem, while Step 2 aims to estimate the reference
signal and satisfy input/output constraints. Therefore, when the algorithm stops early, the obtained control inputs could allow for
satisfactory performance, despite a potential slight mismatch in the reference estimation. The simulations in Section 6 will investigate
the performance degradation under this approach. Note that this approach is not suitable when the system is close to a collision,
15



Transportation Research Part C 155 (2023) 104274J. Wang et al.

d

6

m

Algorithm 1 Distributed DeeP-LCC
1: Input: Initial time 𝑡0, terminal time 𝑡𝑓 , data Hankel matrices 𝑈𝑖,p, 𝑈𝑖,f , 𝐸𝑖,p, 𝐸𝑖,f , 𝑌𝑖,p, 𝑌𝑖,f ;
2: Pre-calculation: For 𝑖 ∈ N𝑛

1, each CAV 𝑖 in parallel calculates the value of 𝛹𝑖 and 𝐻−1
𝑧𝑖

;
3: Initialization: For 𝑖 ∈ N𝑛

1, each CAV 𝑖 initializes 𝑔𝑖, 𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖, 𝜇𝑖, 𝜂𝑖, 𝜙𝑖, 𝜃𝑖 ← 0;
4: while 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 do
5: For 𝑖 ∈ N𝑛

1, each CAV 𝑖 updates past trajectory data (𝑢𝑖,ini, 𝜖𝑖,ini, 𝑦𝑖,ini) before 𝑡;
6: while stopping criteria (B.1) is not satisfied do
7: For 𝑖 ∈ N𝑛−1

1 , each CAV 𝑖 in parallel calculates the following vector signal and sends it to CAV 𝑖 + 1

𝜂̄𝑖 = 𝜂𝑖 − 𝜌𝐾𝑖𝑌𝑖,f𝑧𝑖;

8: For 𝑖 ∈ N𝑛
1, each CAV 𝑖 in parallel calculates the following equation for the value of 𝑔+𝑖

[

𝑔+𝑖
𝜈

]

= −𝛹𝑖

[

𝑞𝑔𝑖
−𝑏𝑔𝑖

]

;

9: For 𝑖 ∈ N𝑛
2, each CAV 𝑖 in parallel calculates the following vector signal and sends it to CAV 𝑖 − 1

𝜖+𝑖 = 𝐸𝑖,f𝑔
+
𝑖 ;

10: For 𝑖 ∈ N𝑛
1, each CAV 𝑖 in parallel calculates

𝑧+𝑖 = −𝐻−1
𝑧𝑖

𝑞𝑧𝑖 , 𝑠̃+𝑖 = 𝛱𝑠 (𝑃𝑖𝑌𝑖,f𝑔
+
𝑖 −

𝜙𝑖
𝜌
), 𝑢+𝑖 = 𝛱𝑢 (𝑈𝑖,f𝑔

+
𝑖 −

𝜃𝑖
𝜌
);

11: For 𝑖 ∈ N𝑛
1, each CAV 𝑖 in parallel obtains

𝜇+
𝑖 = 𝜇𝑖 + 𝜌(𝑔+𝑖 − 𝑧+𝑖 ), 𝜙+

𝑖 = 𝜙𝑖 + 𝜌(𝑠̃+𝑖 − 𝑃𝑖𝑌𝑖,f𝑔
+
𝑖 ), 𝜃+𝑖 = 𝜃𝑖 + 𝜌(𝑢+𝑖 − 𝑈𝑖,f𝑔

+
𝑖 );

meanwhile, for 𝑖 ∈ N𝑛−1
1 , each CAV 𝑖 in parallel calculates

𝜂+𝑖 = 𝜂𝑖 + 𝜌(𝜖+𝑖+1 −𝐾𝑖𝑌𝑖,f𝑧
+
𝑖 );

12: For 𝑖 ∈ N𝑛
1, set 𝑔𝑖, 𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖, 𝜇𝑖, 𝜂𝑖, 𝜙𝑖, 𝜃𝑖 ← 𝑔+𝑖 , 𝑧

+
𝑖 , 𝑠̃

+
𝑖 , 𝑢

+
𝑖 , 𝜇

+
𝑖 , 𝜂

+
𝑖 , 𝜙

+
𝑖 , 𝜃

+
𝑖 respectively.

13: end while
14: For 𝑖 ∈ N𝑛

1, denote the final values from the iterations as 𝑔∗𝑖 , 𝑧
∗
𝑖 , 𝑠̃

∗
𝑖 , 𝑢

∗
𝑖 , 𝜇

∗
𝑖 , 𝜂

∗
𝑖 , 𝜙

∗
𝑖 , 𝜃

∗
𝑖 ← 𝑔𝑖, 𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖, 𝜇𝑖, 𝜂𝑖, 𝜙𝑖, 𝜃𝑖 respectively.

Particularly, 𝑢∗𝑖 is expressed by 𝑢∗𝑖 = col(𝑢∗𝑖 (𝑡), 𝑢
∗
𝑖 (𝑡 + 1),… , 𝑢∗𝑖 (𝑡 +𝑁 − 1));

15: For 𝑖 ∈ N𝑛
1, CAV 𝑖 applies the input 𝑢𝑖(𝑡) ← 𝑢∗𝑖 (𝑡);

16: 𝑡 ← 𝑡 + 1;
17: For 𝑖 ∈ N𝑛

1, each CAV 𝑖 sets the initial values for the next round of iterations as 𝑔𝑖, 𝑧𝑖, 𝑠̃𝑖, 𝑢𝑖, 𝜇𝑖, 𝜂𝑖, 𝜙𝑖, 𝜃𝑖 ←
𝑔∗𝑖 , 𝑧

∗
𝑖 , 𝑠̃

∗
𝑖 , 𝑢

∗
𝑖 , 𝜇

∗
𝑖 , 𝜂

∗
𝑖 , 𝜙

∗
𝑖 , 𝜃

∗
𝑖 respectively;

18: end while

but a low-level safety control algorithm like the standard automatic emergency braking system can ensure safety in such cases.
Alternatively, 5G V2X technology, which offers higher communication frequencies and smaller delays, can also be utilized instead
of commercial V2X technologies. This technique has garnered increasing attention in recent CAV research (Gyawali et al., 2020;
Molina-Masegosa and Gozalvez, 2017).

6. Traffic simulations

This section presents two different scales of nonlinear and non-deterministic traffic simulations to validate the performance of
istributed DeeP-LCC in mixed traffic flow.2

.1. Experimental setup

Motivated by existing research (Jin and Orosz, 2017; Di Vaio et al., 2019; Lan et al., 2021), a noise-corrupted nonlinear OVM
odel is utilized in the experiments to capture the dynamics of HDVs, given as follows (Bando et al., 1995)

𝑣̇𝑖(𝑡) = 𝛼
(

𝑣des
(

𝑠𝑖(𝑡)
)

− 𝑣𝑖(𝑡)
)

+ 𝛽𝑠̇𝑖(𝑡) + 𝛿𝑎, 𝑖 ∈  , (60)

2 The algorithm and simulation scripts are available at https://github.com/PREDICT-EPFL/Distributed-DeeP-LCC.
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where 𝛼, 𝛽 > 0 represent the sensitivity coefficients, and 𝑣des(𝑠) denotes the spacing-dependent desired velocity of the human driver,
given by

𝑣des(𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑠 ≤ 𝑠st ;

𝑓𝑣(𝑠) =
𝑣max
2

(

1 − cos(𝜋 𝑠−𝑠st
𝑠go−𝑠st

)
)

, 𝑠st < 𝑠 < 𝑠go;

𝑣max, 𝑠 ≥ 𝑠go.

In (60), the acceleration noise signal 𝛿𝑎 follows a uniform distribution 𝛿𝑎 ∼ U[−0.1, 0.1], where U[⋅] denotes the uniform distribution.
A heterogeneous but fixed parameter setup is employed for the HDVs: 𝛼 = 0.6+U[−0.2, 0.2], 𝛽 = 0.9+U[−0.2, 0.2], 𝑠go = 35+U[−5, 5].
The rest of parameters are set as 𝑣max = 30, 𝑠st = 5. Note that the OVM model is utilized as an example to capture the HDVs’
behaviors and show the performance of our method. It is also applicable to the case of other car-following models in the form
of (8), e.g., the IDM model (Treiber et al., 2000).

For distributed/centralized DeeP-LCC, the sampling interval is 𝛥𝑡 = 0.05 s. In offline data collection, we assume that there
exists an i.i.d. signal of U[−1, 1] on the control input signal 𝑢𝑖 of each CAV. In this way, the persistent excitation requirement
in Assumptions 1 and 2 is naturally satisfied given a sufficiently large number of data samples. Note that at a greater level of
system noise, some data pre-processing methods can be applied to the data Hankel matrices in (36b), which are constructed from
pre-collected data, to improve the accuracy of data-centric behavior representation; see, e.g., the low-rank approximation in Dorfler
et al. (2022).

In online control, the time horizons for the future signal sequence and past signal sequence are set to 𝑁 = 50, 𝑇ini = 20,
respectively. In the cost function (16), the weight coefficients are set to 𝑤𝑣 = 1, 𝑤𝑠 = 0.5, 𝑤𝑢 = 0.1, corresponding to a balanced
consideration for penalizing velocity errors, spacing errors and control inputs (Wang et al., 2021b, 2023a). For input/output
constraints, the CAV spacing boundaries are set to 𝑠max = 40, 𝑠min = 5, and the acceleration limits are set to 𝑎max = 2, 𝑎min = −5 (this
limit also holds for all the HDVs via saturation). In our simulations, we assume that the equilibrium velocity for all the vehicles is
known as 𝑣∗ = 15, and the equilibrium spacing for the CAVs is designed as 𝑠∗ = 20. We refer the interested readers to Wang et al.
(2023b) for one potential approach to practically estimate the traffic equilibrium states.

For computation, all the experiments are run in MATLAB 2021a. In centralized DeeP-LCC, the quadprog solver is utilized
to solve (21) via the interior point method with the optimality tolerances set to 10−3. In the distributed DeeP-LCC algorithm, no
solvers are needed for computation, and the absolute and relative tolerances for the stopping criterion in Appendix B are set to
𝛿abs = 0.1, 𝛿rel = 10−3. The penalty parameter is chosen as 𝜌 = 1, motivated by the standard setup in Boyd et al. (2011).

6.2. Moderate-scale validation and comparison

Our first experiment focuses on moderate-scale validation of distributed DeeP-LCC and makes comparisons with the centralized
version. We consider 15 vehicles in total behind the head vehicle, among which there exist 5 CAVs (𝑛 = 5), uniformly distributed
in mixed traffic flow. Precisely, the CAVs are located at the 1st, 4th, 7th, 10th, and 13th vehicle. The length for pre-collected data
is 𝑇 = 1200 for centralized DeeP-LCC and 𝑇𝑖 = 300, 𝑖 ∈ N𝑛

1 for distributed DeeP-LCC. Both data lengths are approximately twice
of the lower bound in (33) and (34), respectively. In centralized DeeP-LCC, the weight coefficients for regulated terms are set to
𝜆𝑔 = 10, 𝜆𝑦 = 10000, while in distributed DeeP-LCC, we have 𝜆𝑔𝑖 = 2, 𝜆𝑦𝑖 = 10000, 𝑖 ∈ N𝑛

1. Interested readers are referred to Coulson
et al. (2019a) for the influence of the choice of these regulated weights, and here the setup is motivated by the previous results of
centralized DeeP-LCC (Wang et al., 2023a, 2022b).

In this experiment, we assume that the head vehicle is under a sinusoidal perturbation to capture the scenario where the head
vehicle is already caught in a traffic wave. Specifically, its velocity is designed as a sinusoidal profile with a mean value of 15m∕s
(see the black profile in Fig. 5). In the case of all HDVs, the perturbation of the head vehicle is propagating along the vehicle chain,
and the amplitude of velocity oscillations is even gradually amplified, as shown in Fig. 5(a). In distributed DeeP-LCC, by contrast,
this perturbation is greatly dissipated. In particular, it is observed in Fig. 5(b) that CAV 2 is already driving with a relatively smooth
velocity and without apparent oscillations, indicating that the traffic wave is almost completely absorbed when it arrives at the
second CF-LCC subsystem. This demonstrates the great capability of distributed DeeP-LCC in reducing traffic instabilities.

Since centralized and distributed DeeP-LCC directly rely on the pre-collected trajectory data (12) and (25), respectively, for
online predictive control, the data quality could make a difference on the online predictive control performance. Accordingly, we
proceed to make further comparisons between centralized DeeP-LCC and distributed DeeP-LCC given 100 random sets of pre-
collected trajectory data. Fig. 6(a) shows the real value of cost function 𝑉 given by (16) at each simulation under centralized or
distributed DeeP-LCC. As can be clearly observed, centralized DeeP-LCC achieves a slightly better performance, with distributed
DeeP-LCC losing about 16.79% optimality performance. Note that Theorem 1 has stated that for a noise-free LTI mixed traffic
system, both formulations in the linear setup, i.e., (20) and (31), could achieve a consistent optimal performance given the same
pre-collected trajectory data. The reasons for the performance gap herein between (21) and (36) could include: (1) the setup of a
nonlinear and noise-corrupted mixed traffic system; (2) the difference in pre-collected trajectory data (distributed DeeP-LCC utilizes
much fewer data samples than centralized DeeP-LCC); (3) the impact of regularization in (21) and (36) with respect to (20) and
(31).

In addition, we also show the performance of local MPC in Fig. 6(a), which utilizes the same local input/output measurement
17

𝑢𝑖(𝑡), 𝑦𝑖(𝑡) as distributed DeeP-LCC and employs the accurate model of each CF-LCC subsystem 𝑖 to design the control inputs for
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Fig. 5. Velocity profiles in moderate-scale experiments with 15 vehicles, where a sinusoidal perturbation is imposed on the head vehicle. The black profile
represents the head vehicle, while the blue profiles represent the CAVs, with different darkness denoting different positions, and the gray profiles represent the
HDVs. (a) All the vehicles are HDVs. (b) The CAVs utilize the distributed DeeP-LCC controller.

Fig. 6. Comparison of real cost and computation time between distributed DeeP-LCC, centralized DeeP-LCC and local MPC in 100 experiments in the moderate-
cale simulation. The average cost for Centralized DeeP-LCC, distributed DeeP-LCC, and local MPC is 1.09 × 104, 1.31 × 104, and 1.32 × 104, respectively, while
he average computation time for the three methods is 1.27 s, 0.02 s, and 0.001 s, respectively. This experiment is run in MATLAB 2021a with a CPU of Intel
ore i7-10700.

Fig. 7. Average real cost of distributed DeeP-LCC under different imperfect conditions from 100 experiments in the moderate-scale simulation. The case of no
imit on iterations and no communication delay represents the ideal performance of distributed DeeP-LCC, whose result is consistent with that in Fig. 6. The
erformance degradation percentage with respect to the ideal case is shown in Table 1.

AV 𝑖 based on the standard output-feedback MPC framework. This benchmark method is model-based and locally calculated, i.e.,
there is no cooperation between the different CAVs, and also, it considers a same local control objective 𝑉𝑖 in (28). As can be
clearly observed, despite the slight performance gap of distributed DeeP-LCC with respect to centralized DeeP-LCC, it achieves
a comparable performance with local MPC, which, instead, requires prior knowledge of system dynamics. This result shows the
potential of distributed DeeP-LCC, which directly relies on local trajectory data and allows for CAV cooperation in a distributed
manner.

Furthermore, Fig. 6(b) demonstrates the real-time computation capability of distributed DeeP-LCC, costing only a mean
computation time of 0.017 s for each time step, while it takes up to 1.27 s for solving centralized DeeP-LCC, which is not tolerable for
practical implementation. Thanks to fewer data samples (comparing 𝑇𝑖 = 300 with 𝑇 = 1200) and the computationally efficient design
of the tailored ADMM algorithm, distributed DeeP-LCC achieves this dramatic reduction in computation time, while preserving a
satisfactory performance for dissipating traffic waves.

Finally, we also investigate the performance degradation of distributed DeeP-LCC under typical imperfect conditions. We
consider two issues: (1) an upper bound on the iteration number of the algorithm due to the low communication frequency of
commercial V2X equipment, as discussed in Remark 6; and (2) communication delay in the V2X communications. We compare the
results of the ideal distributed DeeP-LCC (i.e., without iteration limit and communication delay) with those obtained under different
18

imperfect conditions. The average real cost of different cases from 100 random experiments is shown in Fig. 7, and the performance
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Table 1
Performance degradation percentage of average real cost under imperfect conditions.

No limit on iterations Maximum 2 iterations Maximum 1 iteration

No communication delay 0 1.57% 2.66%
0.2 s communication delay 0.65% 2.28% 3.44%

Table 2
Parameter setup of distributed DeeP-LCC in the large-scale simulation.

Penetration rate 𝑚𝑖 𝑇𝑖 𝑤𝑣 𝑤𝑠 𝑤𝑢 𝜆𝑔𝑖 𝜆𝑦𝑖
5% 16, 17, 19, 20, 23 800 2 1 0.2 2 104

10% 7, 8, 9, 10, 11 600 1 0.5 0.1 2 104

20% 3, 4, 5, 6, 7 600 1 0.5 0.1 2 104

Table 3
Velocity profile of the head vehicle in the large-scale simulation.

Time [s] 0–1 1–4 4–9 9–150

Acceleration [m∕s2] −5 0 1 0

1 At the beginning of the simulation, there is one second time for initialization with 15m∕s.

degradation percentage with respect to the ideal case is listed in Table 1. Our findings suggest that, even under imperfect conditions,
distributed DeeP-LCC can provide satisfactory traffic smoothing performance, with no more than 3.44% average real cost loss when
the algorithm iterates only once or twice or there is a communication delay of 0.2 s. This demonstrates the robustness of the method
gainst imperfections in the V2X network. However, when the traffic system is close to collisions or there is a large communication
elay, significant performance degradation is expected. Therefore, future work should focus on adjusting the proposed algorithm to
xplicitly address these imperfect conditions.

.3. Large-scale experiments

Our second experiment aims to validate the cooperative control performance of distributed DeeP-LCC in large-scale mixed
raffic flow, where there are 100 vehicles following behind the head vehicle. Different penetration rates of the CAVs are also
nder consideration, including 5%, 10%, and 20%. In this experiment, the CAVs are not uniformly distributed among the following
ehicles, and there could be different numbers of HDVs in each CF-LCC subsystem. Precisely, Table 2 lists the possible choices of
he HDV number 𝑚𝑖 behind each CAV, and some parameter values of distributed DeeP-LCC in each penetration rate. Note that
he weight coefficients for the cost function are slightly adjusted for different penetration rates. The velocity trajectory for the head
ehicle is designed as shown in Table 3, which takes an emergency brake during the simulations. An instantaneous fuel consumption
odel is employed to calculate the fuel economy of traffic flow (Bowyer et al., 1985): the fuel consumption rate 𝑓𝑖 (mL∕s) of the

𝑖th vehicle is calculated as

𝑓𝑖 =

{

0.444 + 0.090𝑅𝑖𝑣𝑖 + [0.054𝑎2𝑖 𝑣𝑖]𝑎𝑖>0, if 𝑅𝑖 > 0,
0.444, if 𝑅𝑖 ≤ 0,

(61)

here 𝑅𝑖 = 0.333 + 0.00108𝑣2𝑖 + 1.200𝑎𝑖 (𝑎𝑖 denotes the acceleration of vehicle 𝑖).
As shown in Fig. 8(a), when all the vehicles are HDVs, the brake perturbation of the head vehicle causes a direct traffic wave

ropagating upstream, against the moving direction of the vehicles. Meanwhile, two additional waves are also observed (see the
ight panel of Fig. 8(a)): one wave has slight velocity oscillations, while the other one shows the strongest oscillation amplitude.
n comparison, the traffic flow with a small proportion of CAVs equipped with distributed DeeP-LCC behaves quite smoothly in

response to this brake perturbation, as can be clearly observed from Figs. 8(b)–8(d). When there are only 5% CAVs in mixed traffic
flow, our method already enables the CAVs to apparently mitigate traffic waves. As the penetration rate grows up to 10% or 20%,
the traffic wave is rapidly dissipated, and most of the following vehicles only experience neglectable velocity oscillations.

Fig. 9 illustrates the iteration number and computation time of distributed DeeP-LCC in each time step under the penetration
rate of 20%, and an average number of 8.70 iterations is worth noting. In this large-scale mixed traffic system, it is intractable to
solve centralized DeeP-LCC in real time, which would require a great number of data samples and become a large-scale quadratic
programming problem. By contrast, our proposed distributed DeeP-LCC relies on local data of each subsystem, and with efficient
ADMM design, it is capable of mitigating traffic perturbations in large-scale traffic flow. Particularly, by employing the instantaneous
fuel consumption model (61), a 31.84%, 32.34%, 32.53% reduction of fuel consumption is achieved via distributed DeeP-LCC at
the penetration rate of 5%, 10%, and 20%, respectively, compared to the case of pure HDVs. Indeed, we believe that the wave
mitigation performance can be further improved by careful parameter tuning for distributed DeeP-LCC given different penetration
19

rates and spatial formations of the CAVs in mixed traffic flow.
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Fig. 8. Velocity profiles in large-scale experiments with 100 vehicles, where the head vehicle is under a brake perturbation. In the right panel of each subfigure,
the color denotes the vehicle velocity. (a) All the vehicles are HDVs. (b)–(d) The CAVs utilize the distributed DeeP-LCC controller, with different penetration
rates. The black, blue, and gray profiles represents the head vehicle, the CAVs, and the HDVs, respectively.
20
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Fig. 9. Iteration number and computation time of distributed DeeP-LCC at each time step under the penetration rate of 20%. The blue dashed lines represent
the mean value throughout the simulations. (a) The average iteration number is 8.71. (b) The average computation time is 0.069 s. This experiment is run in
MATLAB 2021a with a CPU of Intel Core i7-11800H. The computation time could be further decreased via efficient software development.

7. Conclusions

In this paper, we have presented distributed DeeP-LCC for CAV cooperation in large-scale mixed traffic flow. We partition the
entire mixed traffic system into multiple CF-LCC subsystems and establish a subsystem-based cooperative control formulation, where
each CAV collects local data of its subsystem and utilizes a data-centric representation for predictive control. A tailored ADMM
algorithm is designed for distributed implementation, which decomposes the coupling constraint and achieves computation and
communication efficiency. Two different scales of traffic simulations confirm that distributed DeeP-LCC brings wave-dampening
benefits with real-time computation performance. One future direction is to verify the performance of distributed DeeP-LCC
in real-world environments given the practical V2V/V2X communication capabilities. Given the potential computation delay in
each subsystem, another important topic is to develop asynchronous algorithms for distributed DeeP-LCC to support more robust
application. Finally, it would also be interesting to see the comparison between distributed DeeP-LCC with other data-driven
methods for CAV control in mixed traffic.
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Appendix A. Proof of Theorem 1

The input and output definitions (2) and (6) show that 𝑢𝑖(𝑡), 𝑦𝑖(𝑡), 𝑖 ∈ N𝑛
1 are indeed a row partition of 𝑢(𝑡), 𝑦(𝑡). Thus, when

Assumption 3 holds, the pre-collected data 𝑢d𝑖 , 𝑦
d
𝑖 , 𝑖 ∈ N𝑛

1 are also a row partition of 𝑢d, 𝑦d, we denote this partition pattern as  .
Given 𝑇𝑖 = 𝑇 , 𝑖 ∈ N𝑛

1, the data Hankel matrices 𝑈𝑖,p, 𝑈𝑖,f , 𝑌𝑖,p, 𝑌𝑖,f , 𝑖 ∈ N𝑛
1 are a row partition of 𝑈p, 𝑈f , 𝑌p, 𝑌f respectively with pattern

 . Since a same past system trajectory is under consideration, 𝑢𝑖,ini, 𝑦𝑖,ini, 𝑖 ∈ N𝑛
1 are a row partition of 𝑢ini, 𝑦ini respectively with

pattern  .
In addition, Assumption 3 yields that for subsystem 1, its external reference input is the same as that in the centralized

formulation, and thus

𝐸1,p = 𝐸p, 𝐸1,f = 𝐸f , 𝜖1,ini = 𝜖ini. (A.1)

Given the fact that the external reference input of the subsystems 2, 3,… , 𝑛 is contained in the output of the subsystems 1, 2,… , 𝑛−1
respectively, we have

𝐸𝑖+1,p = 𝐾𝑖𝑌𝑖,p, 𝐸𝑖+1,f = 𝐾𝑖𝑌𝑖,f , 𝜖𝑖+1,ini = 𝐾𝑖𝑦𝑖,ini, 𝑖 ∈ N𝑛−1
1 . (A.2)

We first show that a feasible solution to Problem (31) can be constructed based on 𝑢∗, 𝑦∗. Define 𝑢∗𝑖 , 𝑦
∗
𝑖 , 𝑖 ∈ N𝑛

1 as the -pattern
row partition of 𝑢∗, 𝑦∗ respectively. Given the feasibility of (𝑔∗, 𝑢∗, 𝑦∗) for (20) and the aforementioned partition properties, we have

𝑈 𝑔∗ = 𝑢 , 𝑈 𝑔∗ = 𝑢∗, 𝑖 ∈ N𝑛; (A.3a)
21

𝑖,p 𝑖,ini 𝑖,f 𝑖 1



Transportation Research Part C 155 (2023) 104274J. Wang et al.

w
s

e
d

w

𝑌𝑖,p𝑔
∗ = 𝑦𝑖,ini, 𝑌𝑖,f𝑔

∗ = 𝑦∗𝑖 , 𝑖 ∈ N𝑛
1; (A.3b)

𝐸1,p𝑔
∗ = 𝜖1,ini, 𝐸1,f𝑔

∗ = 𝜖, 𝑖 ∈ N𝑛
1. (A.3c)

Further, the following result is obtained by substituting (A.3b) to (A.2) for all 𝑖 ∈ N𝑛−1
1

𝐸𝑖+1,p𝑔
∗ = 𝐾𝑖𝑌𝑖,p𝑔

∗ = 𝐾𝑖𝑦𝑖,ini = 𝜖𝑖+1,ini, 𝐸𝑖+1,f𝑔
∗ = 𝐾𝑖𝑌𝑖,f𝑔

∗ = 𝐾𝑖𝑦
∗
𝑖 . (A.4)

Based on (A.1)–(A.4), we have

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑖,p
𝐸𝑖,p
𝑌𝑖,p
𝑈𝑖,f
𝐸𝑖,f
𝑌𝑖,f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑔∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑖,ini
𝜖𝑖,ini
𝑦𝑖,ini
𝑢∗𝑖
𝜖𝑖
𝑦∗𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

ith 𝜖1 = 𝜖 and 𝜖𝑖+1 = 𝐾𝑖𝑦
,
𝑖 𝑖 ∈ N𝑛−1

1 . Given the consistency (29) of input/output constraints between the entire system and the
ubsystems, it holds that 𝑢∗𝑖 ∈ 𝑖, 𝑦

∗
𝑖 ∈ 𝑖. Therefore, (𝑢∗𝑖 , 𝑦

∗
𝑖 , 𝑔

∗), 𝑖 ∈ N𝑛
1 is a feasible solution to (31). Thus, we have

𝑛
∑

𝑖=1
𝑉𝑖(𝑢∗𝑖 , 𝑦

∗
𝑖 ) ≤

𝑛
∑

𝑖=1
𝑉𝑖(𝑢

∗
𝑖 , 𝑦

∗
𝑖 ).

Note that according to the definitions of the cost functions (16) and (28), the following relationship is satisfied
𝑛
∑

𝑖=1
𝑉𝑖(𝑢

∗
𝑖 , 𝑦

∗
𝑖 ) = 𝑉 (𝑢∗, 𝑦∗).

Hence, we have
𝑛
∑

𝑖=1
𝑉𝑖(𝑢∗𝑖 , 𝑦

∗
𝑖 ) ≤ 𝑉 (𝑢∗, 𝑦∗). (A.5)

We proceed to show that a feasible solution to Problem (20) can be constructed based on 𝑢∗𝑖 , 𝑦
∗
𝑖 . Precisely, define 𝑢∗ =

[

𝑢∗1 ,… , 𝑢∗𝑛
]

,
𝑦∗ =

[

𝑦∗1 ,… , 𝑦∗𝑛
]

. According to Assumption 3 and the input and output definitions (2) and (6), it is straightforward to know that
(𝑢ini, 𝜖ini, 𝑦ini, 𝑢

∗, 𝜖, 𝑦∗) is already a trajectory of the linearized mixed traffic system (10). By Lemma 1, there exists a 𝑔∗ such that the
quality constraint in Problem (20) is satisfied. Given the consistency of 𝑢∗ ∈  , 𝑦∗ ∈  ⟺ 𝑢∗𝑖 ∈ 𝑖, 𝑦∗𝑖 ∈ 𝑖, 𝑖 ∈ N𝑛

1, it can be
erived that (𝑔∗, 𝑢∗, 𝑦∗) is a feasible solution to (20). Hence, we have

𝑉 (𝑢∗, 𝑦∗) ≤ 𝑉 (𝑢∗, 𝑦∗).

Meanwhile, we have

𝑉 (𝑢∗, 𝑦∗) =
𝑛
∑

𝑖=1
𝑉𝑖(𝑢∗𝑖 , 𝑦

∗
𝑖 ),

and thus it holds that

𝑉 (𝑢∗, 𝑦∗) ≤
𝑛
∑

𝑖=1
𝑉𝑖(𝑢∗𝑖 , 𝑦

∗
𝑖 ). (A.6)

Combining (A.5) and (A.6) leads to the result in (32).

Appendix B. Stopping criterion of distributed DeeP-LCC

Algorithm 1 iterates until 300 rounds or the following stopping criteria is satisfied (𝑖 = 1, 2, 3, 4)

𝑟(𝑖)pri ≤ 𝛿(𝑖)pri and 𝑟(𝑖)dual ≤ 𝛿(𝑖)dual, (B.1)

here 𝑟(𝑖)pri, 𝑟
(𝑖)
dual denote the summarized two-norm value of primal and dual residuals respectively, defined as

𝑟(1)pri =
𝑛
∑

𝑖=1

‖

‖

‖

𝑔+𝑖 − 𝑧+𝑖
‖

‖

‖2
, 𝑟(2)pri =

𝑛−1
∑

𝑖=1

‖

‖

‖

𝐸𝑖+1,f𝑔
+
𝑖+1 −𝐾𝑖𝑌𝑖,f𝑧

+
𝑖
‖

‖

‖2
,

𝑟(3)pri =
𝑛
∑

𝑖=1

‖

‖

‖

𝑠̃+𝑖 − 𝑃𝑖𝑌𝑖,f𝑔
+
𝑖
‖

‖

‖2
, 𝑟(4)pri =

𝑛
∑

𝑖=1

‖

‖

‖

𝑢+𝑖 − 𝑈𝑖,f𝑔𝑖
‖

‖

‖2
;

𝑟(1)dual =
𝑛
∑

𝑖=1
𝜌 ‖‖
‖

𝑧+𝑖 − 𝑧𝑖
‖

‖

‖2
, 𝑟(2)dual =

𝑛−1
∑

𝑖=1
𝜌 ‖‖
‖

𝐸⊤
𝑖+1,f𝐾𝑖𝑌𝑖,f (𝑧+𝑖 − 𝑧𝑖)

‖

‖

‖2
,

𝑟(3)dual =
𝑛
∑

𝜌 ‖‖
‖

𝑃⊤
𝑖 𝑌 ⊤

𝑖,f (𝑠̃
+
𝑖 − 𝑠̃𝑖)

‖

‖

‖2
, 𝑟(4)dual =

𝑛
∑

𝜌 ‖‖
‖

𝑈⊤
𝑖,f (𝑢

+
𝑖 − 𝑢𝑖)

‖

‖

‖2
,
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which corresponds to the four equality constraints (50b)–(50e). In (B.1), 𝛿(𝑖)pri and 𝛿(𝑖)dual denote the feasibility tolerances. Given a
series of equality constraints 𝐴𝑥𝑖 = 𝐵𝑦𝑖 with dual variables 𝜅𝑖 (𝑖 ∈ ), which is in the general form of (50b)–(50e), 𝛿pri and 𝛿dual are
chosen by the following rule (Boyd et al., 2011)

𝛿pri =
∑

𝑖∈

√

𝑘𝛿abs + 𝛿rel max{‖‖
‖

𝐴𝑥+𝑖
‖

‖

‖2
, ‖‖
‖

𝐵𝑦+𝑖
‖

‖

‖2
}, 𝛿dual =

∑

𝑖∈

√

𝑙𝛿abs + 𝛿rel
‖

‖

‖

𝐴⊤𝜅+
𝑖
‖

‖

‖2
,

where 𝛿abs, 𝛿rel denote an absolute and relative tolerance respectively, and 𝑘, 𝑙 represent the size of the corresponding 𝓁2 norm in
each formula.
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