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DeeP-LCC: Data-EnablEd Predictive Leading
Cruise Control in Mixed Traffic Flow

Jiawei Wang , Graduate Student Member, IEEE, Yang Zheng , Member, IEEE, Keqiang Li , and Qing Xu

Abstract— For the control of connected and autonomous
vehicles (CAVs), most existing methods focus on model-based
strategies. They require explicit knowledge of car-following
dynamics of human-driven vehicles that are nontrivial to identify
accurately. In this article, instead of relying on a parametric
car-following model, we introduce a data-driven nonparamet-
ric strategy, called Data-EnablEd Predictive Leading Cruise
Control (DeeP-LCC), to achieve safe and optimal control of
CAVs in mixed traffic. We first utilize Willems’ fundamental
lemma to obtain a data-centric representation of mixed traffic
behavior. This is justified by rigorous analysis on controllability
and observability properties of mixed traffic. We then employ a
receding horizon strategy to solve a finite-horizon optimal control
problem at each time step, in which input–output constraints
are incorporated for collision-free guarantees. Numerical exper-
iments validate the performance of DeeP-LCC compared to a
standard predictive controller that requires an accurate model.
Multiple nonlinear traffic simulations further confirm its great
potential on improving traffic efficiency, driving safety, and fuel
economy.

Index Terms— Connected vehicles, data-driven control, mixed
traffic, model predictive control.

I. INTRODUCTION

WIRELESS communication technologies, e.g., vehicle-
to-vehicle (V2V) or vehicle-to-infrastructure (V2I),

have provided new opportunities for advanced vehicle control
and enhanced traffic mobility [1]. With access to beyond-the-
sight information and edge/cloud computing resources, indi-
vidual vehicles are capable to make sophisticated decisions and
even cooperate with each other to achieve system-wide traffic
optimization. One typical technology is Cooperative Adaptive
Cruise Control (CACC), which organizes a series of connected
and autonomous vehicles (CAVs) into a platoon and applies
cooperative control strategies to achieve smaller spacing, better
fuel economy, and smoother traffic flow [2], [3], [4].
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In practice, CACC or platooning requires all the involved
vehicles to have autonomous capabilities. Considering the
gradual deployment of CAVs, the transition phase of mixed
traffic with the coexistence of human-driven vehicles (HDVs)
and CAVs may last for decades [5], [6], [7]. HDVs, con-
nected to V2V/V2I communication but still controlled by
human drivers, will still be the majority on public roads in
the near future. Without explicitly considering surrounding
HDVs’ behavior, CAVs at a low penetration rate may only
bring negligible benefits on traffic performance [8], [9]. One
extension of CACC to mixed traffic is Connected Cruise
Control (CCC) [10], in which one single CAV at the tail
makes its control decisions by exploiting the information of
multiple HDVs ahead. Another recent extension is Leading
Cruise Control (LCC) that incorporates the motion of HDVs
ahead and behind [11].

Existing CAV control, e.g., CACC and CCC, mainly takes
local-level performance into consideration—the CAVs aim
to improve their own driving performance. Considering the
interactions among surrounding vehicles, a recent concept of
Lagrangian control in mixed traffic aims to focus on system-
level performance of the entire traffic flow by utilizing CAVs
as mobile actuators [5], [6], [12]. In particular, the real-world
experiment in [5] demonstrates the potential of one single CAV
in stabilizing a ring-road mixed traffic system. This has been
subsequently validated from rigorous theoretical analysis [6],
[13] and large-scale traffic simulations [12], [14]. These results
focus on a closed circular road setup [15]. The recent notion
of LCC [11] focuses on general open straight road scenarios
and has provided further insight into CAV control in mixed
traffic: one single CAV can not only adapt to the downstream
traffic flow consisting of its preceding HDVs (as a follower)
but also improve the upstream traffic performance by actively
leading the motion of its following HDVs (as a leader). This
explicit consideration of a CAV as both a leader and a follower
greatly enhances its capability in smoothing mixed traffic flow,
as demonstrated both empirically and theoretically in [11]. One
challenge is to design LCC strategies with safety guarantees
in smoothing traffic flow when the traffic model is not known.

A. Model-Based and Model-Free Control of CAVs

Mixed traffic is a complex human-in-the-loop cyber-
physical system, in which HDVs are controlled by human
drivers with uncertain and stochastic behaviors. Most exist-
ing studies exploit microscopic car-following models and
design model-based control strategies for CAVs, such as linear
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quadratic control [6], [16], structured optimal control [13],
H∞ control [17], and model predictive control [18]. In prac-
tice, however, human car-following behaviors are complex
and nonlinear, which are nontrivial to identify accurately.
Model-free and data-driven methods, bypassing model iden-
tifications, have recently received increasing attention [19],
[20]. For example, reinforcement learning [12], [14] and
adaptive dynamic programming [21], [22] have been recently
utilized for mixed traffic control. Instead of relying on explicit
dynamics of HDVs, these methods utilize online and/or offline
driving data of HDVs to learn CAVs’ control strategies.
However, these methods typically bring a heavy computation
burden and are sample inefficient. Safety is a critical aspect
for CAV control in practical deployment, but this has not
been well addressed in the existing studies [12], [14], [21],
[22]. Indeed, it remains challenging to include constraints to
achieve safety guarantees for these model-free and data-driven
methods [19].

On the other hand, model predictive control (MPC) has
been widely recognized as a primary tool to address control
problems with constraints [18], [23]. Recent advancements in
data-driven MPC have further provided techniques toward safe
learning-based control using measurable data [24], [25], [26].
One promising method is the data EnablEd predictive control
(DeePC) [26] that is able to achieve safe and optimal con-
trol for unknown systems using input–output measurements.
Rather than identifying a parametric system model, DeePC
relies on Willems’ fundamental lemma [27] to directly learn
the system behavior and predict future trajectories. In particu-
lar, DeePC allows one to incorporate input–output constraints
to ensure safety. It has been shown theoretically that DeePC
is equivalent to sequential system identification and MPC
for deterministic linear time-invariant (LTI) systems [26],
[28] and empirically that DeePC could achieve comparable
control performance with respect to MPC with accurate model
knowledge for stochastic and nonlinear systems [29], [30].
Recently, practical applications have been seen in quadcopter
systems [31], power grids [32], and electric motor drives [33].

To the best of our knowledge, data-driven MPC methods,
particularly the recent DeePC method, have not been discussed
for mixed traffic control. Due to distinct and complex dynam-
ical properties of mixed traffic systems, the aforementioned
results [26], [32], [33] are not directly applicable.

B. Contributions

In this article, we focus on the recent LCC framework [11]
and design safe and optimal control strategies for CAVs to
smooth mixed traffic flow. Our method requires no prior
knowledge of HDVs’ car-following dynamics. In particu-
lar, we introduce a Data-EnablEd Predictive Leading Cruise
Control (DeeP-LCC) strategy, in which the CAVs utilize mea-
surable driving data for controller design with collision-free
guarantees. Some preliminary results were presented in [34].
Our contributions of this work are given as follows.

We first establish a linearized state-space model for a
general mixed traffic system with multiple CAVs and HDVs
under the LCC framework. We directly use measurable driving

data as system output since the HDVs’ equilibrium spacing is
typically not measurable. This issue of unknown equilibrium
spacing has been neglected in many recent studies on mixed
traffic [13], [16], [21], [22], [24], [35]. We further show
that the linearized mixed traffic system is not controllable
(except the case when the first vehicle is a CAV) but is
stabilizable and observable. These results are the foundations
of our adaptation of DeePC [26] for mixed traffic control.

We then propose a DeeP-LCC method for CAV control,
which directly utilizes HDVs’ trajectory data and bypasses an
explicit identification of a parametric car-following model. The
standard DeePC requires the underlying system to be control-
lable [26], [27] and thus cannot be directly applied to mixed
traffic. To resolve this, we introduce an external input signal
to record the data of the head vehicle, i.e., the first vehicle
at the beginning of the mixed traffic system. Together with
CAVs’ control input, this contributes to system controllability.
Our DeeP-LCC formulation incorporates spacing constraints
on the driving behavior and thus provides safety guarantees for
CAVs when feasible. Furthermore, our DeeP-LCC is directly
applicable to nonlinear and nondeterministic traffic systems.

We finally carry out multiple traffic simulations to validate
the performance of DeeP-LCC. DeeP-LCC achieves com-
parable performance in nonlinear and nondeterministic cases
with respect to a standard MPC based on an accurate linearized
model. We also design an urban/highway driving scenario
motivated by the New European Driving Cycle (NEDC) and
an emergence braking scenario. Numerical results confirm
the benefits of DeeP-LCC in improving driving safety, fuel
economy, and traffic smoothness. In particular, DeeP-LCC
reduces up to 24.69% fuel consumption with safety guarantees
in the braking scenario at a CAV penetration rate of 25%
compared with the case of all HDVs.

C. Article’s Organization and Notation

The rest of this article is organized as follows. Section II
introduces the modeling for the mixed traffic system, and
Section III presents the controllability and observability anal-
ysis. This is followed by a brief review of the standard DeePC
in Section IV. We present DeeP-LCC in Section V. Traffic
simulations are discussed in Section VI. Section VII concludes
this article. Some auxiliary proofs and implementation details
are included in the Appendix.

Notations: We denote N as the set of natural numbers, 0n

as a zero vector of size n, and 0m×n as a zero matrix of
size m × n. For a vector a and a positive definite matrix X ,
∥a∥

2
X denotes the quadratic form a⊤ Xa. Given a collection

of vectors a1, a2, . . . , am , we denote col(a1, a2, . . . , am) =[
a⊤

1 , a⊤

2 , . . . , a⊤
m

]⊤. Given matrices of the same column
size A1, A2, . . . , Am , we denote col(A1, A2, . . . , Am) =[
A⊤

1 , A⊤

2 , . . . , A⊤
m

]⊤. Denote diag(x1, . . . , xm) as a diago-
nal matrix with x1, . . . , xm on its diagonal entries and
diag(D1, . . . , Dm) as a block-diagonal matrix with matrices
D1, . . . , Dm on its diagonal blocks. We use ei

n to denote an
n × 1 unit vector, with the i th entry being one and the others
being zeros. Finally, A ⊗ B represents the Kronecker product
between matrices A and B.
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Fig. 1. Schematic of DeeP-LCC for CAVs in mixed traffic. The head vehicle is located at the beginning, indexed as 0, behind which there exist n vehicles
indexed from 1 to n. The n vehicles consist of n − m HDVs, whose car-following dynamics are unknown, and m CAVs, indexed from i1 to im . In (offline)
data collection, DeeP-LCC records measurable data of the mixed traffic system, including velocity errors of each vehicle (represented by the black dashed
arrow) and spacing errors of the CAVs (represented by the blue dashed arrow). Then, DeeP-LCC utilizes these data to construct Hankel matrices for future
trajectory predictions. In (online) predictive control, DeeP-LCC employs the collected data to design the optimal future trajectory and sends the control signal
to the CAVs (represented by the red squiggle arrow). Details on DeeP-LCC are presented in Section V.

II. THEORETICAL MODELING FRAMEWORK

In this section, we first introduce the nonlinear modeling of
HDVs’ car-following behavior and then present the linearized
dynamics of a general mixed traffic system under the LCC
framework [11].

As shown in Fig. 1, we consider a general mixed traffic
system with n+1 individual vehicles, among which there exist
one head vehicle, indexed as 0, and m CAVs and n −m HDVs
in the following n vehicles, indexed from 1 to n. Note that
essentially, any HDV ahead of the first CAV can be designated
as the head vehicle. Define � = {1, 2, . . . , n} as the index
set of all the following vehicles, ordered from front to end,
and S = {i1, i2, . . . , im} ⊆ � as the set of the CAV indices,
where i1 < i2 < · · · < im also represent the spatial locations
of the CAVs in the mixed traffic. The position, velocity, and
acceleration of the i th vehicle at time t are denoted as pi (t),
vi (t), and ai (t), respectively.

A. Nonlinear Car-Following Dynamics of HDVs

There are many well-established models to describe
car-following dynamics of HDVs, such as the optimal veloc-
ity model (OVM) [36], and the intelligent driver model
(IDM) [37]. These models can capture various human driving
behaviors and reproduce typical traffic phenomena, e.g., stop-
and-go traffic waves [38].

In these models, the acceleration of an HDV depends on its
car-following spacing si (t) = pi−1(t)− pi (t), i.e., the bumper-
to-bumper distance between vehicle i and its preceding vehicle
i − 1, its relative velocity ṡi (t) = vi−1(t) − vi (t), and its own
velocity vi (t). A typical form is [39]

v̇i (t) = F
(
si (t), ṡi (t), vi (t)

)
, i ∈ �\S (1)

where F(·) is a nonlinear function. Both OVM and IDM can
be written in this general form. Here, we use the OVM model
to exemplify the HDVs’ car-following behavior in (1), which
has been widely considered in [13], [16], [22], and [35]. In

OVM, the dynamics (1) are

v̇i (t) = α(vdes(si (t)) − vi (t)) + β ṡi (t), i ∈ �\S (2)

where α, β > 0 denote the driver’s sensitivity coefficients,
and vdes(s) represents the spacing-dependent desired velocity
of the human driver, given by a continuous piecewise function

vdes(s) =


0, s ≤ sst

fv(s), sst < s < sgo

vmax, s ≥ sgo.

(3)

In (3), the desired velocity vdes(s) becomes zero for a small
spacing sst and reaches a maximum value vmax for a large
spacing sgo. When sst < s < sgo, the desired velocity is given
by a monotonically increasing function fv(s), one typical
choice of which is

fv(s) =
vmax

2

(
1 − cos

(
π

s − sst

sgo − sst

))
. (4)

In the following, we proceed to use the general form (1)
of the car-following model to present the parametric system
modeling and controllability/observability analysis.

B. Input–Output of Mixed Traffic System

We now present the state, output, and input vectors of the
mixed traffic system shown in Fig. 1.

1) Equilibrium Traffic State: In an equilibrium traffic state,
each vehicle moves with the same velocity v∗ and the
corresponding spacing s∗. When each vehicle follows its
predecessor, as shown in Fig. 1, the equilibrium velocity of
the traffic system is determined by the steady-state velocity of
the head vehicle, indexed as 0. If the head vehicle maintains
a constant velocity v0, we have v∗

= v0 for all other vehicles
in Fig. 1.

On the other hand, the equilibrium spacing for each vehicle
might be heterogeneous1 and can be nontrivial to obtain.

1We keep s∗ instead of a heterogeneous symbol s∗

i , i ∈ {1, 2, . . . , n} for
notational simplicity. Our methodology and results are directly applicable in
the heterogeneous case.
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If the HDVs’ car-following dynamics (1) are explicitly known,
we can obtain the equilibrium spacing via solving

F
(
s∗, 0, v∗

)
= 0 (5)

which provides equilibrium points (s∗, v∗). However, s∗

becomes unknown if (1) is not known accurately. The equi-
librium spacing for each CAV is a predesigned variable [6].

2) System State: Assuming that the mixed traffic flow is
moving around an equilibrium state (s∗, v∗), we define the
error state between the actual and the equilibrium point as
(i ∈ �)

s̃i (t) = si (t) − s∗, ṽi (t) = vi (t) − v∗ (6)

where s̃i (t) and ṽi (t) represent the spacing error and velocity
error of vehicle i at time t , respectively. The error states of all
the vehicles are then lumped as the mixed traffic system state
x(t) ∈ R2n that is given by

x(t) =
[

s̃1(t), ṽ1(t), s̃2(t), ṽ2(t), . . . , s̃n(t), ṽn(t)
]⊤

.

(7)

3) System Output: Not all the variables in mixed traffic state
x(t) can be measured. As discussed above, the equilibrium
spacing s∗ for the HDVs is nontrivial to get accurately due
to unknown car-following dynamics (1). It is thus impractical
to observe the spacing errors of the HDVs, i.e., s̃i (t) (i /∈ S).
For the CAVs, their equilibrium spacing can be designed [6],
and thus, their spacing error signal can be measured.

We thus introduce the following output signal:

y(t)=
[

ṽ1(t), ṽ2(t), . . . , ṽn(t), s̃i1(t), s̃i2(t), . . . , s̃im (t)
]⊤

(8)

where y(t) ∈ Rn+m consists of all measurable data, including
the velocity errors of both the HDVs and the CAVs, i.e., ṽi (t)
(i ∈ �), and the spacing errors of all the CAVs, i.e., s̃i (t)
(i ∈ S). The measurable output data are also marked in Fig. 1,
with velocity errors and spacing errors represented by black
dashed arrows and blue dashed arrows, respectively.

4) System Input: In mixed traffic flow, the HDVs are
controlled by human drivers, while the CAVs’ behavior can
be designed. As used in [6], [13], [16], [22], and [35], the
acceleration of each CAV is assumed to be directly controlled

v̇i (t) = ui (t), i ∈ S (9)

where ui (t) is the control input of the CAV indexed as i .
The acceleration signals of all the CAVs are lumped as the
aggregate control input u(t) ∈ Rm that is given by

u(t) =
[

ui1(t), ui2(t), . . . , uim (t)
]⊤

. (10)

In addition to the control input, we introduce an external
input signal ϵ(t) ∈ R of the mixed traffic system, which is
defined as the velocity error of the head vehicle, which is
given by

ϵ(t) = ṽ0(t) = v0(t) − v∗. (11)

This external input signal plays a critical role in our subsequent
system analysis and DeeP-LCC design. Since the head vehicle

is also under human control, this input cannot be designed
directly, but its past value can be measured and future value
can be estimated.

C. Linearized State-Space Model of Mixed Traffic System

After specifying the system state, input, and output, we now
present a linearized mixed traffic model. Using (5) and apply-
ing the first-order Taylor expansion to (1), we obtain the
following linearized model for each HDV{

˙s̃i(t) = ṽi−1(t) − ṽi (t),
˙ṽi(t) = α1s̃i (t) − α2ṽi (t) + α3ṽi−1(t), i ∈�\S

(12)

where α1 = (∂ F/∂s), α2 = (∂ F/∂ ṡ) − (∂ F/∂v), and
α3 = (∂ F/∂ ṡ) with the partial derivatives evaluated at the
equilibrium state (s∗, v∗). To reflect asymptotically stable
driving behaviors of human drivers, we have α1 > 0 and
α2 > α3 > 0 [16]. Taking the OVM model (2) for example,
the equilibrium equation (5) is given by

vdes
(
s∗

)
= v∗ (13)

and the coefficients in the linearized dynamics (12) become

α1 = αv̇des
(
s∗

)
, α2 = α + β, α3 = β

where v̇des(s∗) denotes the derivative of vdes(s) at the equilib-
rium spacing s∗.

For the CAV, we consider a second-order model{
˙s̃i (t) = ṽi−1(t) − ṽi (t)
˙ṽi (t) = ui (t), i ∈ S.

(14)

Based on the state, output, and input vectors in (6)–(11), the
linearized HDVs’ car-following model (12), and the CAV’s
dynamics (14), we derive a linearized state-space model of
the mixed traffic in Fig. 1 as{

ẋ(t) = Ax(t) + Bu(t) + Hϵ(t)
y(t) = Cx(t).

(15)

In (15), the matrices A ∈ R2n×2n, B ∈ R2n×m, H ∈ R2n×1, and
C ∈ R(n+m)×2n are given by

A =


A1,1
A2,2 A2,1

. . .
. . .

An−1,2 An−1,1
An,2 An,1


B =

[
e2i1

2n , e2i2
2n , . . . , e2im

2n

]
, H =

[
h⊤

1 , h⊤

2 , . . . , h⊤

n

]⊤

C =
[

e2
2n, e4

2n, . . . , e2n
2n, e2i1−1

2n , e2i2−1
2n , . . . , e2im−1

2n

]⊤

where2

Ai,1 =

{
P1, i /∈ S
S1, i ∈ S

Ai,2 =

{
P2, i /∈ S
S2, i ∈ S

h1 =

[
1
α3

]
, h j =

[
0
0

]
, j ∈ {2, 3, . . . , n}

with

P1 =

[
0 −1
α1 −α2

]
, P2 =

[
0 1
0 α3

]
, S1 =

[
0 −1
0 0

]
, S2 =

[
0 1
0 0

]
.

2The system matrices A, B, and C are indeed set functions with respect to
the value of S [7]. For simplicity, the symbol S is neglected.
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Remark 1 (State Feedback Versus Output Feedback): Most
existing work on CAV control relies on state feedback, which
assumes a known equilibrium spacing s∗ and requires the sys-
tem state x(t) in (7) (see, e.g., the model-based strategies [6],
[16], [35] and the data-driven strategies [21], [22], [24]). The
output-feedback case has been less investigated (two notable
exceptions are [13] and [40]). In practice, the equilibrium
spacing s∗ is unknown and might be time-varying. Hence,
we introduce a measurable output in (8) that does not use
the HDVs’ spacing errors. Also, the CAVs’ spacing errors
play a critical role in car-following safety, and they should be
constrained for collision-free guarantees. The output-feedback
and constraint requirements motivate us to use an MPC
framework later. □

Remark 2 (Unknown Car-Following Behavior): One chal-
lenge for mixed traffic control lies in the unknown car-
following behavior (1). After linearization, the state-space
model (15) of the mixed traffic system remains unknown.
We focus on a data-driven predictive control method that
directly relies on the driving data of HDVs. Before presenting
the methodology, we need to investigate two fundamental
control-theoretic properties of the mixed traffic system, con-
trollability and observability, which are essential to establish
data-driven predictive control [26]. Our previous work on LCC
has investigated the special case with only one CAV [11].
In Section III, we generalize these results to the case with
possibly multiple CAVs and HDVs coexisting (see Fig. 1). □

III. CONTROLLABILITY AND OBSERVABILITY OF MIXED
TRAFFIC SYSTEMS

Controllability and observability are two fundamental prop-
erties in dynamical systems [41]. For mixed traffic systems,
existing research [11], [16] has revealed the controllability
for the scenario of one single CAV and multiple HDVs, i.e.,
|S| = 1. These results have been unified in the recent LCC
framework with one single CAV [11].

Lemma 1 [11, Corollary 1]: When S = {1}, the linearized
mixed traffic system (15) is controllable if we have

α1 − α2α3 + α2
3 ̸= 0. (16)

Lemma 2 [11, Th. 2]: When S = {i1} with 1 < i1 ≤

n, the linearized mixed traffic system (15) is not controllable
but is stabilizable, if (16) holds. Moreover, if (16) holds the
subsystem consisting of the states s̃1, ṽ1, . . . , s̃i1−1, ṽi1−1 is not
controllable but is stable, while the subsystem consisting of the
states s̃i1 , ṽi1 , . . . , s̃n, ṽn is controllable.

One physical interpretation of Lemmas 1 and 2 is that the
control input of the single CAV has no influence on the state
of its preceding HDVs but has full control of the motion of
its following HDVs when (16) holds.

We now present the controllability properties of the general
mixed traffic system with multiple CAVs and HDVs in Fig. 1.

Theorem 1 (Controllability): Consider the mixed traffic
system (15), where there exist m (m ≥ 1) CAVs with indices
S = {i1, i2, . . . , im}, i1 < i2 < · · · < im . We have the
following.

1) When 1 ∈ S, i.e., i1 = 1, the mixed traffic system is
controllable if (16) holds.

2) When 1 /∈ S, i.e., i1 > 1, the mixed traffic system
is not controllable but is stabilizable, if (16) holds.
In particular, when (16) holds, the subsystem consisting
of the states s̃1, ṽ1, . . . , s̃i1−1, ṽi1−1 is not controllable
but is stable, while the subsystem consisting of the states
s̃i1 , ṽi1 , . . . , s̃n, ṽn is controllable.

Proof: The proof combines the controllability invariance
after state feedback with Lemmas 1 and 2. The details are not
mathematically involved, and we provide them in Appendix A
for completeness.

This result indicates that the general mixed traffic system
consisting of multiple CAVs and HDVs is not controllable
(but stabilizable) unless the vehicle immediately behind the
head vehicle is a CAV. This is expected since the motion of
the HDVs between the head vehicle and the first CAV (i.e.,
vehicles indexed from 1 to i1 −1) cannot be influenced by the
CAVs’ control inputs.

We consider an output-feedback controller design. It is
essential to evaluate the observability of the mixed traffic sys-
tem (15). The notion of observability quantifies the ability of
reconstructing the system state from its output measurements.
By adapting [11, Th. 4], we have the following result.

Theorem 2 (Observability): The general mixed traffic sys-
tem given by (15), where there exist m (m ≥ 1) CAVs,
is observable when (16) holds.

The slight asymmetry between Theorems 1 and 2 is due
to the fact that the control input (10) only includes the
CAVs’ acceleration, while the system output (8) consists of
the velocity error of all the vehicles and the spacing error of
the CAVs. Theorem 2 reveals the observability of the full state
x(t) in mixed traffic under a mild condition. This observability
result facilitates the design of our DeeP-LCC strategy, which
will be detailed in Sections IV and V.

IV. DATA-ENABLED PREDICTIVE CONTROL

In this section, we give an overview of the data-driven
methodology on nonparametric representation of system
behavior and data-enabled predicted control; more details can
be referred to [26] and [30].

A. Nonparametric Representation of System Behavior

DeePC works on discrete-time systems [26]. Let us consider
a discrete-time LTI system{

x(k + 1) = Ad x(k) + Bdu(k)

y(k) = Cd x(k) + Ddu(k)
(17)

where Ad ∈ Rn×n , Bd ∈ Rn×m , Cd ∈ Rp×n , Dd ∈ Rp×m , and
x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rp denote the internal
state, control input, and output at time k (k ∈ N), respectively.
By slight abuse of notation, we use the symbols n, m, and p
to denote system dimensions only in this section.

Classical control strategies typically follow the sequential
system identification and model-based controller design. They
rely on the explicit system model Ad , Bd , Cd , and Dd in (17).
One typical strategy is the celebrated MPC framework [23].
The performance of MPC is closely related to the accuracy
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of the system model. Although many system identification
methods are available [42], it is still nontrivial to obtain an
accurate model for complex systems, e.g., the mixed traffic
system with complex nonlinear human driving behavior. The
recent DeePC [26] is a nonparametric method that bypasses
system identification and directly designs the control input
compatible with historical data. In particular, DeePC directly
uses historical data to predict the system behavior based on
Willems’ fundamental lemma [27].

Definition 1: The signal ω = col(ω(1), ω(2), . . . , ω(T )) of
length T (T ∈ N) is persistently exciting of order l (l ≤ T, l ∈

N) if the following Hankel matrix:

Hl(ω) :=


ω(1) ω(2) · · · ω(T − l + 1)

ω(2) ω(3) · · · ω(T − l + 2)
...

...
. . .

...

ω(l) ω(l + 1) · · · ω(T )

 (18)

is of full row rank.
Williem’s fundamental lemma begins by collecting a length-

T (T ∈ N) sequence of trajectory data from system (17),
consisting of the input sequence ud

= col(ud(1), . . . ,

ud(T )) ∈ RmT and the corresponding output sequence yd
=

col(yd(1), . . . , yd(T )) ∈ RpT . Then, it aims to utilize this
precollected length-T trajectory to directly construct valid
length-L (L ∈ N) trajectories of the system, consisting of
input sequence us

∈ RmL and output sequence ys
∈ RpL .

Lemma 3 (Fundamental Lemma [27]): Consider a control-
lable LTI system (17) and assume the input sequence ud to
be persistently exciting of order L + n. Then, (us, ys) is a
length-L input–output trajectory of system (17) if and only if
there exists g ∈ RT −L+1 such that[

HL
(
ud)

HL
(
yd)]g =

[
us

ys

]
. (19)

This fundamental lemma reveals that given a controllable
LTI system, the subspace consisting of all valid length-L
trajectories is identical to the range space of the Hankel matrix
of depth L generated by a sufficiently rich input signal. Rather
than identifying a parametric model, this lemma allows for
nonparametric representation of system behaviors.

B. Data-EnablEd Predictive Control

Define Tini ∈ N and N ∈ N as the time length of “past
data” and “future data”, respectively. The data Hankel matrices
constructed from the precollected data (ud , yd) are partitioned
into the two parts (corresponding to past data and future data)[

Up

U f

]
:= HTini+N

(
ud), [

Yp

Y f

]
:= HTini+N

(
yd) (20)

where Up and U f consist of the first Tini block rows and the
last N block rows of HTini+N (ud), respectively (similar to Yp

and Y f ). The same column in col(Up, U f ) and col(Yp, Y f )

represents the “past” input–output signal of length Tini and
the “future” input–output signal of length N within a length-
(Tini + N ) trajectory of (17).

At time step t , we define uini = col(u(t − Tini),

u(t − Tini + 1), . . . , u(t − 1)), u = col(u(t), u(t + 1), . . . ,

Algorithm 1 DeePC [26]

u(t + N − 1)) as the past control input sequence with time
length Tini and the future control input sequence with time
horizon N , respectively (similar to yini, y). Then, we have the
following proposition, which is a reformulation of Lemma 3.

Proposition 1 [43]: Consider a controllable LTI sys-
tem (17) and assume the input sequence ud to be persistently
exciting of order Tini + N + n. Then, col(uini, u, yini, y) is a
length-(Tini + N ) input–output trajectory of system (17) if and
only if there exists g ∈ RT −Tini−N+1 such that

Up

Yp

U f

Y f

g =


uini
yini
u
y

. (21)

In particular, if Tini ≥ ν, where ν denotes the lag3 of
system (17), y is unique from (21), ∀uini, yini, u.

A schematic of Proposition 1 is shown in Fig. 2. The
formulation (21) indicates that given a past input–output tra-
jectory (uini, yini), one can predict the future output sequence
y under a future input sequence u directly from precollected
data (ud , yd). It is known that when Tini ≥ ν, one can estimate
the initial state based on model (17) and the past input–output
trajectory (uini, yini). Thus, (21) implicitly estimates the initial
state to predict the future trajectory col(u, y) without an
explicit parametric model [26].

At each time step t , DeePC relies on the data-centric
representation (21) to predict future system behavior and
solves the following optimization problem [26]:

min
g,u,y

J (y, u)

s.t. (21), u ∈ U , y ∈ Y (22)

where J (y, u) denotes the control objective function, and u ∈

U and y ∈ Y represent the input–output constraints, e.g., safety
guarantees and control saturation. Problem (22) is solved in a
receding horizon manner (see Algorithm 1). For comparison,
we also present a standard output-feedback MPC

min
u

J (y, u)

s.t. x(t) = x̂(t)

(17) ∀k ∈ {t, t + 1, . . . , t + N − 1}

u ∈ U, y ∈ Y (23)

where x̂(t) denotes the estimated initial state at time t .

3The lag ν of a system (A, B, C, D) is the smallest integer such that the
observability matrix col(C, C A, . . . , C Aν−1) has full column rank.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2023 at 20:39:41 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DeeP-LCC IN MIXED TRAFFIC FLOW 7

Fig. 2. Interpretation of the fundamental lemma in (21). Here, we use w to denote input–output trajectory pair (u, y). (a) Consecutive length-T trajectory
is collected wd

= col(wd (1), . . . , wd (T )). (b) All consecutive length-(Tini + N ) trajectories are extracted to construct the data Hankel matrix HTini+N (wd ).
In particular, each trajectory is partitioned into two parts, past data of length Tini colored in blue and future data of length T colored in red. (c) Range space
of this data Hankel matrix contains all valid length-(Tini + N ) trajectories of the underlying system.

Despite its well-recognized effectiveness, one crucial chal-
lenge for the standard MPC (23) is the requirement of an
explicit parametric model (17), which is necessary in esti-
mating the initial state x̂(t) and predicting future system
behaviors. In contrast, DeePC (22) focuses on the data-centric
nonparametric representation and bypasses the state estimation
procedure [26]. Recent work has revealed the equivalence
between DeePC and sequential system identification and MPC
for discrete-time LTI systems under mild conditions and
comparable performance of DeePC with respect to MPC based
on accurate model knowledge in applications to nonlinear and
nondeterministic systems [30].

V. DEEP-LCC FOR MIXED TRAFFIC FLOW

Willems’ fundamental lemma requires the controllability of
the discrete-time LTI system (17) and the persistent excitation
of precollected input data ud [27]. As shown in Theorem 1,
the mixed traffic system is not always controllable, and thus,
the original DeePC cannot be directly applied for mixed traffic
control.

In this section, we introduce an external input signal for
mixed traffic. Together with original control input, this leads
to controllability. We first reformulate mixed traffic model (15)
and then present DeeP-LCC for mixed traffic control.

A. Model Reformulation With External Input

Theorem 1 has revealed that the mixed traffic system (15)
is not controllable when 1 /∈ S, i.e., the first vehicle behind
the head vehicle is not a CAV. Still, controllability is a
desired property, which is required in Willems’ fundamental
lemma (Lemma 3) to guarantee the data-centric behavior
representation. To resolve this, we introduce a variant of the
original system (15) that is fully controllable.

The velocity error of the head vehicle ϵ(t) = v0(t)−v∗ is an
external input in (15). This signal is not directly controlled but
can be measured in practice. Define û(t) = col(ϵ(t), u(t)) as
a combined input signal and B̂ =

[
H, B

]
as the corresponding

input matrix. The model for the mixed traffic system becomes{
ẋ(t) = Ax(t) + B̂û(t)
y(t) = Cx(t)

(24)

for which we have the following result.
Corollary 1 (Controllability and Observability of the Refor-

mulated Traffic Model): Suppose that there exist m (m ≥ 1)

CAVs. Then, system (24) is controllable and observable if (16)
holds.

The proof is similar to that of the system when the first
vehicle behind the head vehicle is a CAV [11], i.e., 1 ∈

S; we refer the interested reader to [11, Corollary 1]. For
observability, it is immediate to see that system (24) shares
the same output dynamics as system (15), whose observability
result has been proved in Theorem 2.

By Corollary 1, we can apply the fundamental lemma
using a combined input û(t) consisting of the internal control
input (i.e., the acceleration signals u(t) of the CAVs) and the
external input (i.e., the velocity error ϵ(t) of the head vehicle).
For simplicity, we use the original system model (15) where
the two input signals u(t) and ϵ(t) are still separated. Finally,
the system model (15) is in the continuous-time domain.
We transform it to the discrete-time domain{

x(k + 1) = Ad x(k) + Bdu(k) + Hdϵ(k)

y(k) = Cd x(k)
(25)

where Ad = eA1t
∈ R2n×2n, Bd =

∫ 1t
0 eAt Bdt ∈ R2n×m, Hd =∫ 1t

0 eAt Hdt ∈ R2n×1, Cd = C ∈ R(n+m)×2n , and 1t > 0 is the
sampling time interval.

Assumption 1: Denote λi , i = 1, . . . , 2n, as the eigen-
values of A in the continuous-time mixed traffic system
model (15). We have | Im[λi − λ j ]| ̸= 2πk/1t, k = 1, 2, . . .,
whenever Re[λi − λ j ] = 0, i, j = 1, . . . , 2n.

As revealed in [44, Th. 6.9], Assumption 1 is a sufficient
condition to preserve controllability and observability after dis-
cretization from (15) to the discrete-time system model (25).

B. Nonparametric Representation of Mixed Traffic Behavior

1) Data Collection: We begin by collecting the length-T
trajectory data from the mixed traffic system shown in Fig. 1.
Precisely, the collected data include the following.

1) The combined input sequence ûd
= col(ûd(1), . . . ,

ûd(T )) ∈ R(m+1)T , consisting of CAVs’ acceleration
sequence ud

= col(ud(1), . . . , ud(T )) ∈ RmT and
the velocity error sequence of the head vehicle ϵd

=

col(ϵd(1), . . . , ϵd(T )) ∈ RT ;
2) The corresponding output sequence of the mixed traffic

system yd
= col(yd(1), . . . , yd(T )) ∈ R(n+m)T .

The precollected data are then partitioned into two parts,
corresponding to “past data” of length Tini and “future data”
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of length N . Precisely, define[
Up

U f

]
:= HTini+N

(
ud), [

E p

E f

]
:= HTini+N

(
ϵd)[

Yp

Y f

]
:= HTini+N

(
yd) (26)

where Up and U f consist of the first Tini block rows and the
last N block rows of HTini+N (ud), respectively (similar to E p

and E f and Yp and Y f ).
These precollected data samples could be generated offline

or collected from the historical trajectories of those involved
vehicles. According to Lemma 3, the following assumption is
needed for the precollected data (recall that the order of the
mixed traffic system is 2n).

Assumption 2: The combined input sequence ûd is persis-
tently exciting of order Tini + N + 2n. □

Note that the external input, i.e., the velocity error of the
head vehicle ϵ(t), is controlled by a human driver. Although
it cannot be arbitrarily designed, it is always oscillating
around zero since the driver always attempts to maintain the
equilibrium velocity while suffering from small perturbations.
Thus, given a trajectory with length

T ≥ (m + 1)(Tini + N + 2n) − 1 (27)

which allows for a ûd Hankel matrix of order Tini + N + 2n
to have a larger column number than the row number and
persistently exciting acceleration input u(t) of the CAVs (e.g.,
independent and identically distributed (i.i.d.) noise with zero
mean), the persistent excitation in Assumption 2 is naturally
satisfied.

2) Behavior Representation: Similar to Proposition 1,
we have the following result. At time step t , define

uini = col(u(t − Tini), u(t − Tini + 1), . . . , u(t − 1))

u = col(u(t), u(t + 1), . . . , u(t + N − 1)) (28)

as the control sequence within a past time length Tini and the
control sequence within a predictive time length N , respec-
tively (similar to ϵini and ϵ and yini and y).

Proposition 2: Suppose that (16) and Assumptions 1 and 2
hold. Any length-(Tini + N ) trajectory of the mixed traffic
system (25), denoted as col(uini, ϵini, yini, u, ϵ, y), can be con-
structed via 

Up

E p

Yp

U f

E f

Y f

g =


uini
ϵini
yini
u
ϵ

y

 (29)

where g ∈ RT −Tini−N+1. If Tini ≥ 2n, y is unique from (29),
∀uini, ϵini, yini, u, ϵ.

Proof: Condition (16) and Assumption 1 guarantee the
controllability and observability of the mixed traffic sys-
tem (25), and Assumption 2 offers the persistent excitation
property of precollected data. Then, this result can be derived
from Proposition 1. Since the mixed traffic system is observ-
able under condition (16), its lag is not larger than its state

dimension 2n, and thus, we have the uniqueness of y by
Proposition 1.

Proposition 2 reveals that by collecting traffic data, one
can directly predict the future trajectory of the mixed traffic
system. We thus require no explicit model of HDVs’ car-
following behavior. Note that HDVs are controlled by human
drivers and have complex and uncertain dynamics. This result
allows us to bypass a parametric system model and directly
use nonparametric data-centric representation for the behavior
of the mixed traffic system.

C. Design of Cost Function and Constraints in DeeP-LCC

Motivated by DeePC (22), we show how to utilize the non-
parametric behavior representation (29) to design the control
input of the CAVs. We design the future behavior (u, ϵ, y) for
the mixed traffic system in a receding horizon manner. This
is based on precollected data (ud , ϵd , and yd) and the most
recent past data (uini, ϵini, and yini) that are updated online.

Compared to the standard DeePC (21), one unique feature
of (29) is the introduction of the external input sequence, i.e.,
the velocity error ϵ of the head vehicle. The past external
input sequence ϵini can be collected in the control process,
but the future external input sequence ϵ cannot be designed
and is also unknown in practice. Although its future behavior
might be predicted based on traffic conditions ahead, it is
nontrivial to achieve an accurate prediction. Since the driver
always attempts to maintain the equilibrium velocity, one nat-
ural approach is to assume that the future velocity error of the
head vehicle is zero, i.e.,

ϵ = 0N . (30)

Similar to LCC [11], we consider the performance of the
entire mixed traffic system in Fig. 1 for controller design.
Precisely, we use a quadratic cost function J (y, u) to quantify
the mixed traffic performance by penalizing the output devi-
ation (recall that y in (8) represents the measurable deviation
from equilibrium) and the energy of control input u, which is
defined as

J (y, u) =

t+N−1∑
k=t

(
∥y(k)∥2

Q + ∥u(k)∥2
R

)
(31)

where the weight matrices Q and R are set as Q =

diag(Qv, Qs) with Qv = diag(wv, . . . , wv) ∈ Rn×n , Qs =

diag(ws, . . . , ws) ∈ Rm×m , and R = diag(wu, . . . , wu) ∈

Rm×m with wv, ws, and wu representing the penalty for the
velocity errors of all the vehicles, spacing errors of all the
CAVs, and control inputs of the CAVs, respectively.

Now, we introduce several constraints for CAV control in
mixed traffic. First, the safety constraint for collision-free
guarantees needs to be considered. To address this, we impose
a lower bound on the spacing error of each CAV, which is
given by

s̃i ≥ s̃min, i ∈ S (32)

with s̃min denoting the minimum spacing error for each CAV.
With the appropriate choice of s̃min, the rear-end collision of
the CAVs is avoided whenever feasible.
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Second, to attenuate traffic perturbations, existing CAVs’
controllers tend to leave an extremely large spacing from the
preceding vehicle (see, e.g., [5] and the discussions in [13,
Sec. V-D]), which in practice might cause vehicles from
adjacent lanes to cut in. To tackle this problem, we introduce
a maximum spacing constraint for each CAV, which is shown
as follows:

s̃i ≤ s̃max, i ∈ S (33)

where s̃max represents the maximum spacing error. Recall that
the spacing error of the CAVs is contained in the system
output (8), whose future sequence y serves as a decision
variable in behavior representation (29). Thus, we translate the
constraints (32) and (33) on the spacing errors to the following
constraint on future output sequence:

s̃min ≤ IN ⊗
[

0m×n Im
]
y ≤ s̃max. (34)

Finally, the control input of each CAV is constrained con-
sidering the vehicular actuation limit, given as follows:

amin ≤ u ≤ amax (35)

where amin and amax denote the minimum and the maximum
acceleration, respectively.

D. Formulation of DeeP-LCC

We are now ready to present the following optimization
problem to obtain the optimal control input of the CAVs:

min
g,u,y

J (y, u)

s.t. (29), (30), (34), (35). (36)

Note that unlike u and y, the future velocity error sequence ϵ

of the head vehicle, i.e., the external input of the mixed traffic
system, is not a decision variable in (36); instead, it is fixed
as a constant value, as shown in (30).

Furthermore, it is worth noting that the nonparametric
behavior representation shown in Proposition 2 is valid for
deterministic LTI mixed traffic systems. In practice, the car-
following behavior of HDVs is nonlinear, as discussed in
Section II-A, and also has certain uncertainties, leading to a
nonlinear and nondeterministic mixed traffic system. Practical
traffic data collected from such a nonlinear system are also
noise-corrupted, and thus, the equality constraint (29) becomes
inconsistent, i.e., the subspace spanned by the columns of the
data Hankel matrices fails to coincide with the subspace of all
valid trajectories of the underlying system.

Motivated by the regulated version of DeePC [26], we intro-
duce a slack variable σy ∈ R(n+m)Tini for the system past output
to ensure the feasibility of the equality constraint and then
solve the following regularized optimization problem:

min
g,u,y,σy

J (y, u) + λg∥g∥
2
2 + λy

∥∥σy
∥∥2

2

s.t.


Up

E p

Yp

U f

E f

Y f

g =


uini
ϵini
yini
u
ϵ

y

 +


0
0
σy

0
0
0


(30), (34), (35). (37)

Algorithm 2 DeeP-LCC for Mixed Traffic Control

This formulation (37) is applicable to nonlinear and nonde-
terministic mixed traffic systems. In (37), the slack variable σy

is penalized with a weighted two-norm penalty function, and
the weight coefficient λy > 0 can be chosen sufficiently large
such that σy ̸= 0 only if the equality constraint is infeasible.
In addition, a two-norm penalty on g with a weight coefficient
λg > 0 is also incorporated. Intuitively, the regularization
term λg∥g∥

2
2 reduces the “complexity” of the data-centric

behavior representation and avoids overfitting, while the term
λy∥σy∥

2
2 improves the prediction accuracy while guaranteeing

the representation feasibility. The introduction of the practical
constraints (34) and (35) provides safety guarantees for the
CAVs when they are feasible. The notion of recursive fea-
sibility plays a critical role for safety guarantees. We refer
the interested readers to a recent result [45, Proposition 1]
on recursive feasibility of the standard DeePC under an upper
level bounded condition on the slack variable σy and a terminal
constraint of stabilizing the system at equilibrium within the
predictive horizon N . Due to the page limit, we leave the
recursive feasibility of DeeP-LCC for future work.

As shown in Fig. 1, our proposed DeeP-LCC mainly
consists of two parts:

1) offline data collection, which records measurable
input–output traffic data and constructs data Hankel
matrices;

2) online predictive control, which relies on data-centric
representation of system behavior for future trajectory
prediction.

In particular, at each time step during online predictive
control, we solve the final DeeP-LCC formulation (37) in
a receding horizon manner. Algorithm 2 lists the procedure
of DeeP-LCC. We note that problem (37) amounts to solve a
quadratic program, for which very efficient and reliable solvers
exist.

Remark 3 (Regularization): The regularization approach
in (37) is common in the recent work on employing Willems’
fundamental and DeePC for nonlinear and stochastic con-
trol [29], [31], [32], [33], [45], and [46]. From a theoretic
perspective, it has been revealed in [29], [32] that the reg-
ulation on g coincides with distributional robustness. Some
closed-loop properties, such as recursive feasibility and expo-
nential stability, have also been rigorously proved in [45]
and [46] for nonlinear and stochastic systems by impos-
ing terminal constraints and typical auxiliary assumptions
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(e.g., linear independence constraint qualification). In addition,
the effectiveness of the regularization has been demon-
strated in multiple empirical studies on practical nonlinear
systems with noisy measurements, including quadcopter sys-
tems [31], power grids [32], and electric motor drives [33].
Motivated by the aforementioned research, we introduce
this regularization into DeeP-LCC for the nonlinear and
nondeterministic traffic systems. Note that unlike previous
work [29], [32], [45], [46], our formulation (37) has an
external disturbance input signal ϵ, and we leave its theoret-
ical investigation for future research. Indeed, it is observed
from our nonlinear simulations in Section VI and our
follow-up real-world miniature experiments in [47] that the
proposed regularized formulation (37) achieves effective wave-
dampening performance for CAVs in practical mixed traffic
systems. □

Remark 4 (External Input): Compared to standard DeePC,
we introduce the external input signal and utilize (30) to
predict its future value. To address the unknown future external
input, another approach is to assume a bounded future velocity
error of the head vehicle. This idea is similar to robust
DeePC against unknown external disturbances (see, e.g., [32],
[48]). It is interesting to further design robust DeePC for
mixed traffic when the head vehicle is oscillating around an
equilibrium velocity, but this is beyond the scope of this
work. In Section VI, our traffic simulations reveal that by
assuming (30) and updating equilibrium based on historical
velocity data of the head vehicle, the proposed DeeP-LCC
has already shown excellent performance in improving traffic
performance. □

Remark 5 (Computational Complexity): For mixed traffic
control, both MPC and DeeP-LCC can be formulated into
a quadratic program for numerical computation. In the
DeeP-LCC formulation (37), one could use g ∈ RT −Tini−N+1

as the main decision variable, with an equality constraint given
by Upg = uini ∈ RTinim (here, the influence of the external
input is neglected without loss of generality). As revealed
in (27), the precollected data length T is lower bounded by
(m + 1)(Tini + N + 2n) − 1, and thus, DeeP-LCC has at least
2mn + 2n + Nm free decision variables. For MPC, its opti-
mization size is captured by the future control sequence u ∈

RNm . Therefore, the online optimization size of DeeP-LCC
is slightly larger than that of MPC with 2mn + 2n additional
decision variables, but it is observed in Section VI that the
computation time of DeeP-LCC is acceptable for small-
scale simulations (about 28.07 ms). Meanwhile, the simplicity
of DeeP-LCC is worth noting: it directly utilizes a single
trajectory for online predictive control based on one integrated
optimization formulation (37). In particular, it requires no
prior knowledge of the system model and circumvents an
offline model identification step and an online initial state
estimation step, which are necessary steps in standard output-
feedback MPC. Still, it is an important future direction
to improve the computational efficiency of DeeP-LCC for
large-scale mixed traffic flow. We refer the interested read-
ers to [49] for a recent potential approach by distributed
optimization. □

VI. TRAFFIC SIMULATIONS

This section presents three nonlinear and nondeterministic
traffic simulations to validate the performance of DeeP-LCC
in mixed traffic. The nonlinear OVM model (2) is utilized to
depict the dynamics of HDVs. A noise signal with the uniform
distribution of U[−0.1, 0.1] m/s2 is added to acceleration
dynamics model (2) of each HDV in our simulations.4

For the mixed traffic system in Fig. 1, we consider eight
vehicles behind the head vehicle, among which there exist
two CAVs and six HDVs, i.e., n = 8 and m = 2 (this
corresponds to a CAV penetration rate of 25%). The two CAVs
are located at the third and the sixth vehicles, i.e., S = {3, 6}.
The parameter setup for DeeP-LCC is given as follows.

1) Offline Data Collection: The length for the precollected
trajectory is chosen as T = 800 with a sampling
interval 1t = 0.05 s. When collecting trajectories,
we consider an equilibrium traffic velocity of 15 m/s,
and the precollected datasets from this equilibrium are
used for all the following experiments. For the system
inputs, we utilize the OVM model (2) as a predesigned
controller for the CAVs with random noise perturbations
and assume a random slight perturbation on the head
vehicle’s velocity. Given a sufficiently long trajectory,
this design naturally satisfies the persistent excitation
requirement in Assumption 2 and is also applicable to
practical traffic flow. More details and an illustration of
a precollected trajectory can be found in Appendix B.

2) Online Control Procedure: The time horizons for the
future signal sequence and past signal sequence are
set to N = 50 and Tini = 20, respectively. In the
cost function (31), the weight coefficients are set to
wv = 1, ws = 0.5, and wu = 0.1; for constraints,
the boundaries for the spacing of the CAVs are set to
smax = 40 m and smin = 5 m, and the limit for the
acceleration of the CAVs is set to amax = 2 m/s2 and
amin = −5 m/s2 (this limit also holds for all the HDVs
via saturation). In the regulated formulation (37), the
parameters are set to λg = 10 and λy = 10 000.

A. Performance Validation Around an Equilibrium State

Motivated by [16], [22], and [35], our first experiment
(Experiment A) simulates a traffic wave scenario, where
vehicles accelerate and decelerate periodically, by imposing
a sinusoidal perturbation on the head vehicle around the
equilibrium velocity of 15 m/s (see the black profile in Fig. 3
for the velocity trajectory of the head vehicle), and investigates
the performance of CAVs in dampening traffic waves. In
particular, we aim to compare the performance of the proposed
DeeP-LCC with the standard output-feedback MPC (23)
based on an accurate mixed traffic system model (25). The
dynamical model for all the HDVs is set to follow the nominal
parameter values [6], [13], [16]: α = 0.6, β = 0.9, vmax =

30, sst = 5, sgo = 35, and v∗
= 15. The MPC controller

4The algorithm and simulation scripts are available at
https://github.com/soc-ucsd/DeeP-LCC
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Fig. 3. Velocity profiles in Experiment A, where a sinusoidal perturbation
is imposed on the head vehicle. The black profile represents the head vehicle
(vehicle 0, and the gray profile represents the HDVs with different darkness
denoting different vehicle indices. The red profile (vehicle 3) and the blue
profile (vehicle 6) represent the first and the second CAV, respectively. (a) All
the vehicles are HDVs. (b) CAVs utilize the MPC controller. (c) CAVs utilize
the DeeP-LCC controller.

is designed using the accurate linearized model (25) around
the same equilibrium velocity of 15 m/s as that in offline
data collection, while DeeP-LCC is designed according to
the procedures in Section V. The other parameters, e.g., the
coefficients in cost function and past/future time horizon,
remain the same between MPC and DeeP-LCC.

When all the vehicles are HDVs, it is observed in Fig. 3(a)
that the amplitude of such perturbation is amplified along the
propagation. This perturbation amplification greatly increases
fuel consumption and collision risk in mixed traffic. In con-
trast, with two CAVs existing in traffic flow and employing
either MPC or DeeP-LCC, the amplitude of the perturbation is
clearly attenuated, as shown in Fig. 3(b) and (c), respectively.
This demonstrates the capabilities of CAVs in dissipating
undesired disturbances and stabilizing traffic flow using either
MPC or DeeP-LCC.

We note that Fig. 3(c) shows the performance of DeeP-LCC
using one single precollected trajectory. Different precollected
trajectories might influence the performance of DeeP-LCC,
as DeeP-LCC directly relies on these data to design the CAVs’
control input. To see the influence, we collect 100 trajectories
of the same length T = 800 to construct the data Hankel
matrices (37) and carry out the same experiment. Fig. 4
shows the cost value J given by (31) at each simulation
under DeeP-LCC or MPC. Recall that MPC utilizes the
accurate linearized dynamics for control input design, and its
performance can be regarded as the optimal benchmark for the
nonlinear traffic control around the equilibrium state. In com-
parison, DeeP-LCC directly relies on the raw trajectory data,
and the regularization in (37) might influence the optimality
of the original cost J (y, u). From our random experiments,
we observe that DeeP-LCC achieves a mean real cost that
is quite close to the benchmark (losing only 4.8% optimal-
ity) for the noise-corrupted nonlinear traffic system without

Fig. 4. Comparison of real cost between DeeP-LCC and MPC in 100 exper-
iments in Experiment A. The dashed line represents the average real cost of
each controller, which is 2.91 × 104 for MPC and 3.05 × 104 for DeeP-LCC
with a standard deviation of 0.003 × 104 and 0.077 × 104, respectively.

TABLE I
HETEROGENEOUS PARAMETER SETUP FOR HDVS IN

EXPERIMENTS B AND C

requiring any knowledge of the underlying system. These
random experimental results validate the comparable wave-
dampening performance of DeeP-LCC with respect to MPC
based on accurate dynamics. This observation is consistent
with previous studies of DeePC on other nonlinear dynamical
systems such as quadcopters [26] or power grid [32].

B. Traffic Improvement in Comprehensive Simulation

In Experiment A, we consider a fixed traffic equilibrium
state and a nominal parameter setup for all HDVs. Here,
in Experiment B, we design both an urban driving trajectory
and a highway driving trajectory for the head vehicle motivated
by ECE-15 and Extra-Urban Driving Cycle (EUDC) from
the NEDC [50] and validate the capability of DeeP-LCC in
improving traffic performance with time-varying equilibrium
states. In addition, we assume a heterogeneous parameter
setup around the nominal value for all the HDVs by utilizing
the OVM model (2), see Table I. The MPC controller still
utilizes the nominal parameter setup to design the control
input, while DeeP-LCC relies on precollected trajectory data
as usual. Note that practical traffic flow might have different
equilibrium states in different time periods. In DeeP-LCC,
we design a simple strategy to estimate equilibrium velocity
by calculating the mean velocity of the head vehicle during
the past horizon Tini (the same time horizon for past signal
sequence in DeeP-LCC). Meanwhile, the equilibrium spacing
for the CAVs is chosen according to (13) using the OVM
model with a nominal parameter setup (see Appendix C for
more details).

To quantify traffic performance, we consider the fuel con-
sumption and velocity errors for the vehicles indexed from
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Fig. 5. Velocity profiles in Experiment B, which is designed, motivated by NEDC. (a) and (b) Case where all the vehicles are HDVs in the urban and
highway scenarios, respectively. (c) and (d) Case where there are two CAVs utilizing DeeP-LCC in urban and highway scenarios. The color of each profile
has the same meaning as that in Fig. 3.

3 to 8 since the first two HDVs cannot be influenced by the
CAVs (recall that n = 8 and S = {3, 6}). Precisely, we utilize
an instantaneous fuel consumption model in [51]: the fuel
consumption rate fi (mL/s) of the i th vehicle is calculated
as

fi =

{
0.444 + 0.090 Rivi +

[
0.054 a2

i vi
]

ai >0, if Ri > 0
0.444, if Ri ≤ 0

where Ri = 0.333+0.00108 v2
i +1.200 ai with ai denoting the

acceleration of vehicle i . To quantify velocity errors, we use
an index of mean squared velocity error (MSVE) given by

MSVE =
1t

n
(
t f − t0

) t f∑
t=t0

n∑
i=1

(vi (t) − v0(t))2

where t0 and t f denote the begin time and end time of
the simulation, respectively. This MSVE index depicts the
tracking performance toward the velocity of the head vehicle
and measures traffic smoothness.

The results of velocity trajectories of each vehicle are
shown in Fig. 5. Compared to the case with all HDVs,
DeeP-LCC allows the CAVs to rapidly track the trajectory
of the head vehicle without overshoot and thus mitigates
velocity perturbations and smooths the mixed traffic flow in
both urban and highway scenarios. In addition, we observe that
the improved traffic behavior under DeeP-LCC is close to that
under MPC. By dividing the urban and highway driving cycles
into different phases (see Fig. 5), we illustrate the reduction
rate of fuel consumption and MSVE by MPC and DeeP-LCC
with respect to the case with all HDVs in Fig. 6. Both MPC
and DeeP-LCC contribute to a significant improvement in fuel
economy and traffic smoothness. In particular, DeeP-LCC
saves up to 9.05% fuel consumption during Phase 3 of urban
driving scenarios and up to 43.82% velocity error during Phase
1 of highway driving scenarios.

Note that MPC utilizes the nominal model to design the
control input, while DeeP-LCC relies on the trajectory data
to directly predict the future system behavior. Thus, MPC
is not easily applicable in practice since the nominal model
for individual HDVs is generally unknown. In contrast, with-
out explicitly identifying a parametric model, DeeP-LCC
achieves a comparable performance with MPC using only
precollected trajectory data, which are easier to acquire for the
CAVs via V2V/V2I communications. In addition, although the
optimization complexity of DeeP-LCC is slightly higher than
that of MPC (see Remark 5), its mean computation time during
this experiment is 28.07 ms in a laptop computer equipped
with Intel Core i7-11800H CPU and 32-GB RAM. This
computational cost is acceptable for real-time implementation
in the underlying system scale (eight vehicles with two CAVs).

Remark 6: Previous work on validating CAVs’ wave-
dampening performance mostly considers a similar simulation
scenario to Experiments A and C (sinusoidal or brake pertur-
bation), see, e.g., [13], [16], [22], [35]. In our work, we have
introduced the driving cycle, which is indeed mostly used
for measuring fuel consumption and emission of one single
vehicle, to further demonstrate the performance of DeeP-LCC
in various traffic scenarios. In addition, note that in our data
collection for DeeP-LCC, the traffic conditions around the
fixed equilibrium velocity of 15 m/s are considered to capture
the system behavior (see Appendix B for illustration of the
precollected trajectory). In the simulations, however, the equi-
librium is time-varying, and we assume that the HDVs have
a similar behavior around different equilibrium states in order
to make the fundamental lemma directly applicable with the
data collected from one single equilibrium. This assumption
indeed may not hold, and thus, the performance of DeeP-LCC
might be compromised in this simulation. We provide further
discussions and potential approaches to address time-varying
equilibrium in Appendix C. □
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Fig. 6. Performance improvement of MPC and DeeP-LCC compared with
the case where all the vehicles are HDVs in the comprehensive experiments.
In the horizontal axis of each panel, P# is abbreviated for Phase #, denoting the
phase number shown in Fig. 5. (a) Fuel consumption reduction rate. (b) MSVE
reduction rate.

C. Experiments in Emergence Braking Scenarios

To further validate the safety performance of DeeP-LCC,
we design an emergence braking scenario motivated by Exper-
iment B. As shown by the black profile in Fig. 7, the velocity
of the head vehicle is: it maintains the normal velocity at the
beginning; then, it takes a sudden emergency brake with the
maximum deceleration and maintains the low velocity for a
while; finally, it accelerates to the original normal velocity
and maintains it in the rest time. This is a typical emergency
case in real traffic, and it requires the CAVs’ control to avoid
rear-end collision. Note that the same precollected dataset
around the equilibrium velocity of 15 m/s as the previous
experiments is utilized in this simulation, and thus, as dis-
cussed in Section VI-B and Appendix C, the performance of
DeeP-LCC could still be compromised.

The results are shown in Fig. 7. When all the vehicles are
HDVs, they have a large velocity fluctuation in response to the
brake perturbation of the head vehicle. In contrast, when two
vehicles utilize DeeP-LCC, they have a different response
pattern from the HDVs: the CAVs decelerate immediately
when the head vehicle starts to brake, thus achieving a larger
safe distance from the preceding vehicle [see the time period
0–10 s in Fig. 7(d)]; the CAVs also accelerate slowly when the
head vehicle begins to return to the original velocity [see the
time period 9–12 s in Fig. 7(f)]. In the case of all HDVs, they
take a delayed rapid acceleration [see the time period 12–20 s
in Fig. 7(e)], which lead to worse driving comfort and larger
fuel consumption.

In addition, for this braking scenario, DeeP-LCC achieves
a comparable performance with respect to MPC, which is
designed based on prior linearized mixed traffic dynamics.
Both strategies save a considerable rate of fuel consumption at

Fig. 7. Simulation results in Experiment C, where a sudden brake pertur-
bation is imposed on the head vehicle. (a), (c), and (e) Velocity, spacing,
and acceleration profiles, respectively, when all the vehicles are HDVs.
(b), (d), and (f) Corresponding profiles where there are two CAVs utilizing
the DeeP-LCC controller. In (c)–(f), the profiles of other HDVs are hided.
The color of each profile has the same meaning as that in Fig. 3.

a CAV penetration rate of 25% compared with the case of all
HDVs (DeeP-LCC: 24.69% and MPC: 25.12%). This experi-
ment result further demonstrates the capability of DeeP-LCC:
it allows the CAVs to eliminate velocity overshoot, improve
fuel economy, and constrain the spacing within the safe range
while requiring no knowledge of HDVs’ driving behaviors,
contributing to more practical applications than MPC in real-
world mixed traffic flow.

VII. CONCLUSION

In this article, we have presented a novel DeeP-LCC
for CAV control in mixed traffic with multiple HDVs and
CAVs coexisting. Our dynamical modeling and controlla-
bility/observability analysis guarantees the rationality of the
data-centric nonparametric representation of mixed traffic
behavior in the linearized setup and further supports the
feasibility of applying it to the nonlinear and stochastic mixed
traffic system in real scenarios. In particular, DeeP-LCC
directly relies on the trajectory data of the HDVs, bypassing a
parametric HDV model, to design the CAVs’ control input.
Multiple numerical experiments confirm that DeeP-LCC
achieves great improvement in traffic efficiency and fuel
economy.

It is very interesting to adapt our current DeeP-LCC for
time-varying traffic equilibrium states, in which we need to
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investigate how to update precollected data for constructing
Hankel matrices. To address system nonlinearity, besides
introducing regularization and relaxation into the online opti-
mization problem (37) in this article, it is also worth future
investigations to establish a valid data-centric representation
for mixed traffic dynamics with explicit consideration of
nonlinear human driving behaviors. Communication delays are
another important practical issue to consider in DeeP-LCC.
Existing research has revealed the great potential of standard
DeePC in addressing problems with delays [32]. In addi-
tion, the recursive feasibility of DeeP-LCC needs further
investigation, which guarantees CAV control inputs within
safety constraints. Finally, the computational efficiency of
DeeP-LCC is worth further investigation for large-scale
systems. Similar to distributed MPC [18] in CAV control,
distributed versions of DeeP-LCC will also be extremely
interesting.

APPENDIXES

This appendix provides the proof of Theorem 1, detailed
elaboration of offline data collection, and further discussions
on the implementation of DeeP-LCC.

A. Proof of Theorem 1

The following lemma is useful for proving Theorem 1.
Lemma 4 (Controllability Invariance [41]): (A, B) is con-

trollable if and only if (A − BK , B) is controllable for any
matrix K with compatible dimensions.

Based on Lemma 4, we transform system (A, B) in (15) into
( Ā, B) by introducing a virtual input ū(t), which is defined as

ū(t) =
[

ui1(t), ūi2(t), . . . , ūim (t)
]⊤

(38)

where for r = 2, . . . , m, we define

ūir (t) = uir (t) −
(
α1s̃ir (t) − α2ṽir (t) + α3ṽir −1(t)

)
.

Then, we have

ū(t) = u(t) − K x(t) (39)

where K = [0n, ei2
n , . . . , eim

n ]
⊤ K̄ and K̄ is given by

K̄ =


0

k2,2 k2,1
. . .

. . .

kn,2 kn,1

 ∈ Rn×2n

with

ki,1 =
[

α1 −α2
]
, ki,2 =

[
0 α3

]
.

According to (39), we have A = Ā − BK . By Lemma 4,
controllability is consistent between (A, B) and ( Ā, B). For
system ( Ā, B), the physical interpretation of the virtual input
ū(t) in (38) is that except the control input of the first CAV, the
control input signals of all the other CAVs contain a signal that
follows the linearized car-following dynamics of HDVs (12).

Letting uir (t) = 0 (r = 2, . . . , m), system ( Ā, B) is
converted to a mixed traffic system with one single CAV—
only the CAV indexed as i1, i.e., the first CAV in the mixed

traffic, has a control input. By Lemmas 1 and 2, which state
the controllability of the mixed traffic system with one single
CAV, system ( Ā, B) thus has the same controllability property.
Since the controllability of ( Ā, B) and (A, B) is the same,
we complete the proof of Theorem 1.

The proof of Corollary 1 is similar to that of Lemma 2 when
S = {1}. We refer the interested readers to [11] for details.

B. Offline Data Collection in DeeP-LCC

One critical issue in offline data collection of DeeP-LCC is
to guarantee the persistent excitation requirement in Assump-
tion 2 for the system input, consisting of CAVs’ control inputs
u(t) and the external input ϵ(t), i.e., velocity error of the head
vehicle. To satisfy this assumption, we present the detailed
discussions and the specific implementation method in our
simulations as follows.

1) For the control input of the CAVs, in practice, we need
a predesigned controller (e.g., a car-following model
or an ACC-type controller) to control the motion of
the CAVs in order to achieve CAV normal driving.
Meanwhile, one could add certain i.i.d noise signal
into the control model to enrich the control inputs.
In our experiments, we utilize the OVM model (2) as
a predesigned controller for the CAVs, and the control
inputs are designed as

ui (t)=α(vdes(si (t)) − vi (t)) + β ṡi (t) + δu, i ∈ S

(40)

where δu ∈ [−1, 1] m/s2, and the parameters follow the
nominal parameter setup in Table I.

2) For the external input, it is known that in practice, the
velocity of the head vehicle is under human control, and
it is always oscillating slightly around the human driver’s
desired velocity. To simulate this scenario, we assume
that the external input signal is given by

ϵ(t) = δϵ(k) ∼ U[−1, 1] m/s (41)

where t = 10k + b with k ∈ N, b ∈ {0, 1, 2, . . . , 9},
and δϵ ∼ U[−1, 1] m/s. Recall that in the offline
data collection for our experiments, we consider a fixed
equilibrium velocity of 15 m/s, i.e., the head vehicle
should have a mean velocity of 15 m/s. This design (41)
means that its velocity changes randomly and slightly
around the equilibrium velocity every ten time steps
(0.5 s).

Due to the stochasticity of the input signals (40) and (41),
the persistent excitation requirement can be satisfied when the
input length is sufficiently long (since a longer trajectory leads
to more columns in the Hankel matrix, making it easier to be
full row rank). The theoretical lower bound on the input length
T is (m + 1)(Tini + N + 2n) − 1, as revealed in (27), which
is of value 257 in our experiments in Section VI, and we
choose T = 800 for redundancy considerations. One could
verify the full rank condition by Definition 1 before applying
the precollected dataset to controller design. We present one
precollected trajectory in Fig. 8 for illustration, which is also
utilized in Experiments B and C in Section VI.
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Fig. 8. Illustration of the precollected trajectory utilized in Experiments
B and C. (a) and (b) System inputs, including the control input, i.e., the
acceleration of the CAVs, and the external input, i.e., the velocity error of the
head vehicle. (c) and (d) Measured system output, including the velocity of
all the vehicles and the spacing of the CAVs.

C. Practical Implementation With Time-Varying Equilibrium

In Section VI-A, we consider a fixed equilibrium state of
15 m/s for the simulated traffic flow. The trajectory data are
collected around this state and the simulations are also carried
out around it. In Sections VI-B and VI-C, we have utilized the
average velocity of the head vehicle among the past horizon
Tini to estimate the equilibrium velocity. Precisely, at time t ,
we have

v∗
=

1
Tini

t−1∑
t−Tini

v0(t)

s∗
= arccos

(
1 − 2

v∗

vmax

)
·

sgo − sst

π
+ sst

(42)

where the parameter values follow the nominal setup in
Table I. This consideration enables the CAV to estimate the
real-time equilibrium velocity and meanwhile have a human-
like desired spacing policy, according to the OVM model (2).
Combining this simple design (42) with DeeP-LCC, our sim-
ulation results have revealed the great potential of DeeP-LCC
in improving traffic performance, although (42) might lead to
mismatched equilibrium states.

When collecting trajectory data, we still consider the traffic
flow around a fixed equilibrium velocity of 15 m/s to construct
the data Hankel matrices. In DeeP-LCC, however, we obtain
uini and yini by calculating the deviation from the time-varying
equilibrium state obtained from (42). By assuming that the
HDVs have a similar behavior around different equilibrium
states, one could still apply the fundamental lemma to obtain
valid control input.

This assumption does not always hold in practice, and
thus, the performance demonstrated in the comprehensive
simulation in Section VI-B and the braking simulation
in Section VI-C might not fully reveal the potential of
DeeP-LCC. In particular, there could be a mismatch between

the current mixed traffic behavior and the predicted behavior
generated from the precollected datasets by Willems’ funda-
mental lemma. To address this problem, one approach is to
collect trajectory data from multiple equilibrium states, and
when implementing DeeP-LCC, one can choose appropriate
data (e.g., those data around the estimated current equilibrium
state) to construct data Hankel matrices and design the con-
trol input. Another potential method is to update trajectory
data utilized for data Hankel matrices by recording the real-
time historical trajectory data in the control procedure. This
method is also applicable to the case of time-varying mixed
traffic behavior in order to capture the latest dynamics; see,
e.g., [48] for applications in building control, where the new
input–output measurements are appended on the right side of
the Hankel matrices and the old data on the left side are
discarded. Finally, it is also an interesting future direction
to investigate the robustness performance of DeeP-LCC in
mixed traffic in the case of behavior mismatch between data
collection and real-time implementation.
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