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Abstract— Connected and automated vehicles (CAVs) have a
great potential to improve traffic efficiency in mixed traffic
systems, which has been demonstrated by multiple numerical
simulations and field experiments. However, some fundamental
properties of mixed traffic flow, including controllability and
stabilizability, have not been well understood. This paper ana-
lyzes the controllability of mixed traffic systems and designs a
system-level optimal control strategy. Using the Popov-Belevitch-
Hautus (PBH) criterion, we prove for the first time that a
ring-road mixed traffic system with one CAV and multiple
heterogeneous human-driven vehicles is not completely control-
lable, but is stabilizable under a very mild condition. Then,
we formulate the design of a system-level control strategy for
the CAV as a structured optimal control problem, where the
CAV’s communication ability is explicitly considered. Finally,
we derive an upper bound for reachable traffic velocity via
controlling the CAV. Extensive numerical experiments verify the
effectiveness of our analytical results and the proposed control
strategy. Our results validate the possibility of utilizing CAVs as
mobile actuators to smooth traffic flow actively.

Index Terms— Autonomous vehicle, mixed traffic flow, control-
lability and stabilizability, structured optimal control.

I. INTRODUCTION

DURING the past decades, the increasing mobility demand
has put a heavy burden on the existing transporta-

tion infrastructures. Designing advanced control methods has
attracted significant research attention in order to improve
traffic efficiency and road safety [1]. Most existing strategies
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for traffic control rely on certain actuators at fixed locations,
such as traffic signals and signs on roadside infrastructure [2].
Two typical systems are variable speed limits and variable
speed advisory, which already have certain industrial applica-
tions [3]. Due to their dependence on fixed infrastructure and
drivers’ compliance, however, the flexibility and effectiveness
of these systems might be compromised [4].

As one key ingredient of traffic systems, the motion of
vehicles plays an important role in traffic efficiency. Recent
advancements on control and communication technologies
have led to the emergence of connected and automated vehi-
cles (CAVs), which are expected to revolutionize road trans-
portation systems significantly. Compared to human-driven
vehicles (HDVs), the cooperative formation of multiple CAVs,
e.g., adaptive cruise control (ACC) and cooperative adap-
tive cruise control (CACC) [5], has shown very promising
effects on achieving higher traffic efficiency [6], better driving
safety [7] and lower fuel consumption [8]. These effects have
been demonstrated and validated in some large-scale numerical
simulations [9] and small-scale field experiments [10]. These
technologies typically require that all the involved vehicles
have autonomous capabilities. In practice, however, as the
gradual deployment of CAVs, there will have to be a tran-
sition phase of mixed traffic systems containing both CAVs
and HDVs. Due to the interactions between neighboring vehi-
cles, it is possible to use a few CAVs as mobile actuators to
influence the motion of their surrounding vehicles, which may
in turn control the global traffic flow. This notion is known as
the Lagrangian control of traffic flow [4], [11]. In this aspect,
Cui et al. presented some theoretical analysis on the potential
of one single CAV in a ring-road scenario [12], and the pioneer
real-world experiments in [4] clearly demonstrated that one
single CAV has a certain ability to dissipate stop-and-go waves
in mixed traffic flow. In this paper, we continue this direction
of controlling traffic flow via CAVs, and present rigorous
controllability analysis and optimal controller synthesis of
mixed traffic systems consisting of one CAV and multiple
heterogeneous HDVs.

Understanding the dynamics of mixed traffic systems is
essential to reveal the full potential of CAVs. Many previous
studies are based on numerical experiments for various traffic
scenarios, which have demonstrated some positive effects of
CAVs on improving traffic stability, capacity and throughput;
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see, e.g., [13], [14]. These studies suggest that some improve-
ment in traffic efficiency can be achieved if the penetration
rate of CAVs reaches a certain level; otherwise, the existence
of CAVs might lead to negligible influence [15], [16]. We note
that these findings are valid only for specific control strategies
and particular simulation setups. The theoretical potential of
CAVs requires further investigation. Recently, a few results
have been derived with respect to theoretical analysis of
mixed traffic systems that reveal some fundamental properties.
For example, Talebpour and Mahmassani [6] examined the
string stability of a mixed vehicle platoon with infinite length
and revealed a relationship between the traffic stability and
the penetration rate of CAVs. The effect of CAVs’ spatial
distribution was investigated in [17], which derived necessary
conditions for linear stability of mixed traffic systems. More
recently, theoretical controllability analysis was carried out by
Cui et al. [12] and then extended by Zheng et al. [18], where it
is proved that mixed traffic flow in a ring-road scenario can be
stabilized by controlling one single CAV. This stabilizability
result reveals an essential ability of a single CAV in smoothing
traffic flow. However, the theoretical results in [12], [18] are
only applicable to uniform traffic flow due to the homogeneous
assumption for HDVs. In real traffic situations, it is necessary
to consider the heterogeneous case where various types of
drivers and vehicles coexist. This makes the controllability
analysis more challenging, since the method of eigenvector
calculation in [12] and the strategy of block diagonalization
in [18] are not directly applicable.

In addition to analyzing the dynamics of mixed traffic
systems, several new methods have been recently proposed
for the control of CAVs in mixed traffic flow [4], [11],
[18]–[28]. One common feature of these methods is that the
dynamics of other HDVs are considered in the system model
explicitly. For example, a notion of connected cruise control
(CCC), proposed by Orosz [19], exploits information from
multiple HDVs ahead to design control decisions for the CAV
at the tail of a vehicle string. In a similar setup, various
topics have been investigated, including estimation of HDV
dynamics [29], robustness against model uncertainties [30],
influence of control feedback gains [24], and impairments of
imperfect communication conditions [20]. However, the role
of communication abilities in mixed traffic flow has not
been addressed explicitly in these studies. It is shown that
different communication topologies have a big impact on the
performance of a platoon formation; see, e.g., [31], [32].
In addition, the methods in [19], [20], [24], [25] typically
take local traffic performance around the CAV into account
for controller design.

In this paper, we explicitly take into consideration the
communication abilities of CAVs and highlight a crucial trans-
formation towards the control goal of CAVs, from a local-level
to a system-level. Specifically, one goal of CAV control is
to achieve certain desired performance of the entire traffic
system. This idea is indeed supported by previous research
on dampening traffic waves. In this direction, the existing
methods can be classified into three categories: 1) Heuristic
methods [4], [26], [27], which typically modify the CAV
behavior based on different traffic states to dissipate traffic

waves. For example, several extensions of ACC systems were
developed to adapt their parameters based on current traffic
situations [26]. A jam-absorption driving strategy based on
geometric features of trajectory data was proposed in [27] to
improve the effectiveness of CAV control. One disadvantage
of this class of methods is that the parameter values may
need to be tuned empirically in different traffic conditions, and
the performance is not completely predictable. Moreover, they
lack theoretical guarantees for their performance and tend to
leave a long gap from its preceding vehicle, possibly causing
other vehicles to cut in. 2) Learning-based methods [11],
[23], [28], which leverage machine learning frameworks, such
as deep reinforcement learning, to train control strategies of
CAVs. With improving the entire traffic flow as the train-
ing objective, the resulting strategy can enable CAVs to
achieve a system-level control goal, for example, bottleneck
decongestion [11] and stop-and-go wave dissipation [28]. The
shortages of these methods include that the non-transparent
training process is usually computationally demanding, and
the resulting strategies might lack generalizability and inter-
pretability. 3) Model-based methods [18], [20], [22], which
adopt the perspective of rigorous control theory and offer
certain insights for the CAV control problem in mixed traffic.
For example, both Vaio et al. [20] and Wu et al. [22]
formulated a controller synthesis problem that enables the
CAV to dampen traffic waves based on string stability analysis.
Recently, an optimal control method for CAVs was proposed
in [18], which attempts to achieve a system-level optimum
criterion. Nevertheless, the requirement of global information
of the entire traffic flow in [18] might restrict its practical
applications.

In this paper, we focus on the controllability analysis and
optimal controller synthesis of a mixed traffic system, which
consists of one CAV and multiple heterogeneous HDVs in a
ring road. First, we use a linearized car-following model to
describe the behavior of mixed traffic flow. Then, the con-
trollability analysis of this system is conducted based on
the Popov-Belevitch-Hautus (PBH) criterion [33]. Moreover,
we formulate the design of a system-level control strategy
for the CAV as a structured optimal control problem [34],
which incorporates explicit structural constraints according to
the CAV’s communication ability. Precisely, our contributions
are as follows.

1) We prove that a mixed traffic system with multiple
heterogeneous HDVs and one single CAV is not com-
pletely controllable, but is stabilizable under a very mild
condition. This result reveals a fundamental property
of mixed traffic systems and confirms the feasibility of
traffic control via CAVs, with no need of changing the
behavior of HDVs. Also, our theoretical results validate
the empirical observations in [4] that a single CAV is
able to stabilize mixed traffic flow and dampen undesired
disturbances. In the case of homogeneous dynamics for
HDVs, our result is consistent with [12], [18]. Note
that our proof relies heavily on the PBH test and
eigenvalue-eigenvector analysis, and the methods in [12]
and [18] are not directly suitable for the heterogeneous
case.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 19,2023 at 21:09:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: CONTROLLABILITY ANALYSIS AND OPTIMAL CONTROL OF MIXED TRAFFIC FLOWS 7447

Fig. 1. System modeling schematic. (a) A single-lane ring road with one CAV
and n −1 HDVs. (b) A simplified network system schematic. The blue arrows
in (a)(b) represent the communication topology for the CAV; the purple arrows
in (b) represent the interaction direction of car-following dynamics of HDVs.

2) We formulate the problem of designing a control strategy
for the CAV with limited communication abilities in
the mixed traffic flow as structured optimal controller
synthesis. Unlike existing methods, such as CACC [5]
and CCC [19], which attempt to achieve a better driving
behavior of the CAV itself, the CAV control in our
formulation directly aims to improve the performance of
the entire traffic flow. In addition, the issue of limited
communication is considered explicitly in our formula-
tion. The structured optimal control is in general com-
putationally intractable [34], and we utilize the recent
advance in sparsity invariance [35] to derive a convex
relaxation, which allows one to compute a suboptimal
solution efficiently.

3) We present an analytical result with respect to the reach-
ability property of the mixed traffic system, revealing a
fundamental relationship between the desired state and
the system dynamics. Based on the reachability analysis,
we derive an upper bound of reachable velocity of mixed
traffic flow and show how to design the desired system
state in the controller. Extensive numerical experiments
validate our theoretical results, and also confirm that the
proposed controller can stabilize traffic flow and dampen
traffic waves.

Some preliminary results have been presented in a con-
ference version [36]. The rest of this paper is organized
as follows. Section II introduces the modeling for a mixed
traffic system and the problem statement. The controllability
result is presented in Section III, and Section IV describes
the theoretical framework to obtain a system-level optimal
controller and the design of desired system state. Numerical
simulations are shown in Section V, and Section VI concludes
this paper.

II. SYSTEM MODELING AND PROBLEM STATEMENT

A. Modeling the Mixed Traffic System

As shown in Fig. 1, we consider a single-lane ring road with
circumference L consisting of one CAV and n − 1 HDVs.
It has been shown experimentally in [37], [38] that the
ring road setup can easily reproduce the phenomenon of

Fig. 2. Car-following dynamics for HDVs. (a) The driver usually considers
the state of the preceding and his own vehicle. (b) A typical relationship
between equilibrium spacing and equilibrium velocity, given by (2). Typically,
v∗ grows as s∗ increases. For the same v∗, the equilibrium spacing s∗ for
different drivers may be different.

traffic waves without any infrastructure bottlenecks or lane
changing behaviors. Moreover, as discussed in [4], [12], [18],
this setup also has several theoretical advantages, including
1) representative of a closed traffic system with no need
for boundary conditions, 2) perfect control of average traffic
density, 3) correspondence to an infinite straight road with
periodic traffic dynamics.

We denote the position, velocity and acceleration of
vehicle i as pi , vi and ai respectively. The spacing of vehicle i ,
i.e., its relative distance from vehicle i − 1, is defined as
si = pi−1 − pi . Without loss of generality, the vehicle
length is ignored and we assume that vehicle no.1 is the
CAV. The optimal velocity model (OVM) [39] and intelligent
driver model (IDM) [40] are two typical models to describe
car-following dynamics of human-driven vehicles. Both of
them can be expressed as [21]

v̇i (t) = Fi (si (t), ṡi (t), vi (t)) , (1)

where ṡi (t) = vi−1(t) − vi (t), and Fi (·) denotes that the
acceleration of vehicle i is determined by the relative distance,
relative velocity and its own velocity; see Fig. 2(a) for illustra-
tion. In equilibrium traffic state, each vehicle moves with the
same equilibrium velocity v∗, i.e., vi (t) = v∗, ṡi (t) = 0, for
i = 1, . . . , n. Meanwhile, each vehicle has a corresponding
equilibrium spacing s∗

i . According to (1), s∗
i of each HDV

should satisfy

Fi
(
s∗

i , 0, v∗) = 0, i = 2, . . . , n. (2)

From (2), it is immediate to see that different choices of
v∗ yield different values of s∗

i for each HDV; see Fig. (2b)
for a typical relationship between s∗

i and v∗. Unlike HDVs,
the equilibrium spacing of the CAV, i.e., s∗

1 , can be designed
separately. The choice of s∗

1 is discussed in Section IV-C.
Assuming that each vehicle has a small perturbation from

the equilibrium state (s∗
i , v∗), we define the error state between

actual and equilibrium state of vehicle i as

xi(t) = [
s̃i (t), ṽi (t)

]T = [
si (t) − s∗

i , vi (t) − v∗]T
.

Using (2) and applying the first-order Taylor expansion to (1),
we can derive a linearized model for each HDV (i = 2, . . . , n){ ˙̃si (t) = ṽi−1(t) − ṽi (t),

˙̃vi (t) = αi1 s̃i (t) − αi2ṽi (t) + αi3 ṽi−1(t),
(3)
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with αi1 = ∂Fi
∂si

, αi2 = ∂Fi
∂ ṡi

− ∂Fi
∂vi

, αi3 = ∂Fi
∂ ṡi

evaluated at the
equilibrium state. To reflect the real driving behavior, we have
αi1 > 0, αi2 > αi3 > 0 [12]. For the CAV, indexed as i = 1,
the acceleration signal is directly used as the control input u(t),
and its car-following model is{ ˙̃s1(t) = ṽn(t) − ṽ1(t),

˙̃v1(t) = u(t).
(4)

To derive the global dynamics of the mixed traffic sys-
tem, we lump the error states of all the vehicles into one
global state, i.e., x(t) = [

xT
1 (t), xT

2 (t), . . . , xT
n (t)

]T
. Then,

a linearized state-space model for the mixed traffic system
is obtained

ẋ(t) = Ax(t) + Bu(t), (5)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

C1 0 . . . . . . 0 C2
A22 A21 0 . . . . . . 0
0 A32 A31 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . 0 An2 An1

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

B1
B2
B2
...

B2

⎤
⎥⎥⎥⎥⎥⎦ ,

with each block matrix defined as

Ai1 =
[

0 −1
αi1 −αi2

]
, Ai2 =

[
0 1
0 αi3

]
, i = 2, 3, . . . , n

C1 =
[

0 −1
0 0

]
, C2 =

[
0 1
0 0

]
, B1 =

[
0
1

]
, B2 =

[
0
0

]
.

Remark 1: Note that unlike [12], [18], [21] which focused
on homogeneous dynamics only, we allow HDVs to have het-
erogeneous car-following dynamics Fi (·). Thus, the equilib-
rium spacing s∗

i and the blocks Ai1, Ai2 are in general different
for different vehicles at the same equilibrium velocity v∗.
This heterogeneity consideration is more suitable for practical
scenarios, but also brings more challenges for theoretical
analysis.

B. Problem Statement

Before proceeding with the problem of designing an optimal
control input u(t) for the mixed traffic system (5), we intro-
duce two standard notions.

Definition 1 (Controllability [33]): The dynamical system
ẋ = Ax + Bu, or the pair (A, B), is controllable if, for any
initial state x(0) = x0, any time t f > 0 and any final state x f ,
there exists an input u(t) such that x(t f ) = x f .

It is well-known that if a system is controllable, we can
place its closed-loop poles arbitrarily. For uncontrollable
systems, there exist some uncontrollable modes that cannot
be moved. If the uncontrollable modes are stable, we can
still design a feedback controller to stabilize the closed-loop
system. This leads to the notion of stabilizability.

Definition 2 (Stabilizability [33]): A system is stabilizable
if its uncontrollable modes are all stable.

Controllability and stabilizability are two fundamental prop-
erties of linear systems, which guarantee the existence of a
stabilizing feedback controller. We note that many previous
studies in mixed traffic systems only considered a specific

Fig. 3. Illustration for structured constraints under limited communication
abilities. The dashed blue arrows denote the communication topology of
the CAV, i.e., vehicle i . Since the CAV can only have access to the state
information of vehicles i + 1, i − 1, i − 2, the specific feedback gain is zero
for those vehicles from which vehicle i cannot receive the information, i.e.,
vehicles i + 2, i − 3. The notation ∗ denotes that the specific feedback gain
can be given a value of compatible dimensions.

CAV controller and focused on traffic stability, but have not
discussed these notions explicitly. Two notable exceptions are
in [12], [18] where controllability analysis was conducted
under the assumption of a homogeneous HDV model. In this
paper, our first objective is to address the controllability and
stabilizability of the heterogeneous mixed traffic system (5),
formally stated as follows.

Problem 1 (Controllability and Stabilizability): Investigate
whether or under what circumstances the mixed traffic
system (5) is controllable or stabilizable.

As depicted in Fig. 1b, the mixed traffic flow can be
viewed as a network system with the only CAV as a single
driving node. Due to the limit of communication abilities in
practice, the CAV can only receive partial information of the
global traffic system for its feedback u(t). Therefore, it is
important to consider the local available information of the
neighboring vehicles. Utilizing limited information exchange
to control a large-scale network system leads to the notion
of structured controller design [34]. To be precise, we define
Ec ⊆ {1, 2, . . . , n} × {1} as the communication network
between the CAV and HDVs, where (i, 1) ∈ Ec means that the
CAV can receive the information from vehicle i . We consider
a static state-feedback controller, i.e., u(t) = −K x(t), where
K = [

k1, k2, . . . , kn
] ∈ R

1×2n and each block ki ∈ R
1×2

represents the feedback gain of the state of vehicle i , i.e.,
xi (t) = [

s̃i (t), ṽi (t)
]T. To reflect the communication topology,

we require ki = 0, if (i, 1) /∈ Ec. Hence, the communi-
cation topology requirement can be naturally imposed as a
pre-specified sparsity pattern on K ; see Fig. 3 for illustration.
We define a block-sparsity pattern

K := {K ∈ R
1×2n |ki = 0, if (i, 1) /∈ Ec, ki ∈ R

1×2}.
Then, the second objective of this paper is as follows.

Problem 2 (Optimal Controller Synthesis): compute a stru-
ctured optimal controller K ∈ K for the CAV to dampen
undesired perturbations in traffic flow, where K is determined
by the communication topology Ec.

Perturbations in traffic flow are usually caused by lane
changes and merges, but can also be generated in the absence
of bottlenecks due to the stochastic nature of human’s driving
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behavior [37]. These undesired perturbations might result in
traffic waves, which may easily cause series traffic congestion.
In this paper, the undesired perturbation is modeled as a
disturbance signal in each vehicle’s acceleration. A precise
formulation will be given in Section IV-A.

III. CONTROLLABILITY AND STABILIZABILITY

In this section, we analyze the controllability and stabiliz-
ability of the mixed traffic system (5).

A. Controllability Analysis

For completeness, we first introduce some notations. Denote
dim(·) as the dimension of a linear subspace, and kerM as the
null space of M ∈ R

n×n , i.e., kerM = {x ∈ R
n |Mx = 0}.

Lemma 1 (Algebraic Multiplicity [41]): Given an eigen-
value λ of a matrix M , its algebraic multiplicity is the sum of
the sizes of all its corresponding Jordan blocks. The number
of its corresponding Jordan blocks is dim ker(M − λI ), and
the number of its Jordan blocks of size k is 2dim ker(M −
λI )k − dim ker(M − λI )k+1 − dim ker(M − λI )k−1.

Lemma 2 (PBH Controllability Test [33]): System (A, B)
is controllable, if and only if

[
λI − A, B

]
is of full row rank

for all λ being an eigenvalue of A.
It is clear that

[
λI − A, B

]
is of full row rank is equivalent

to that the left null space of
[
λI − A, B

]
is empty, i.e., there

exists no non-zero vector ρ such that ρT [
λI − A, B

] = 0.
Conversely, if there exists ρ (ρ �= 0) such that ρT A = λρT

and ρT B = 0, then (A, B) is not completely controllable, and
(λ, ρ) corresponds to an uncontrollable mode, which can also
be given by ρTx in the form of state component where x is
the state vector.

Lemma 3 (Controllability Invariance Under State
Feedback [33]): (A, B) is controllable, if and only if
(A − B K , B) is controllable for any state feedback K ∈ R

1×n

(A ∈ R
n×n). Furthermore, systems (A, B) and (A − B K , B)

share the same uncontrollable modes.
To facilitate the controllability analysis of the mixed traffic

system (5), we use Lemma 3 and make the following trans-
formation: suppose that the CAV has an external input

û(t) = u(t) − K̂ x

= u(t) − (α11s̃1(t) − α12ṽ1(t) + α13ṽn(t)) ,

where K̂ = [
α11,−α12, 0, 0, . . . , 0, α13

] ∈ R
1×2n and

α11, α12, α13 are three positive constants. Then the original
system (A, B) can be transformed into ( Â, B), described by
the following dynamics

ẋ(t) = Âx(t) + Bû(t), (6)

with Â = A − B K̂ , which can also be written as

Â =

⎡
⎢⎢⎢⎢⎢⎣

A11 0 . . . . . . 0 A12
A22 A21 0 . . . . . . 0
0 A32 A31 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . 0 An2 An1

⎤
⎥⎥⎥⎥⎥⎦ , (7)

Fig. 4. Illustration of system transformation and controllability invariance.
Left and right correspond to (A, B) in (5) and ( Â, B) in (6) respectively.
From left to right the CAV under control input u(t) is replaced by an HDV
with external control input û(t).

where

A11 =
[

0 −1
α11 −α12

]
, A12 =

[
0 1
0 α13

]
.

( Â, B) describes a ring-road traffic system where all the
vehicles are HDVs and one of them has an external control
input û(t); see Fig. 4 for illustration of the system transforma-
tion. Since Â = A − B K̂ , we have the following proposition
according to Lemma 3.

Proposition 1: The controllability, stabilizability and
uncontrollable modes remain the same between ( Â, B)
and (A, B).

Therefore, we focus on system ( Â, B) in the following. The
first main result is as follows.

Theorem 1 (Controllability): Consider the mixed traffic
system in a ring road with one CAV and n − 1 heterogeneous
HDVs given by (5). The following statements hold:

1) System (5) is not completely controllable.
2) There exists one uncontrollable mode corresponding to a

zero eigenvalue, and this uncontrollable mode is stable.
Proof: Denote ρ0 = [

1, 0, 1, 0, . . . , 1, 0
]T ∈ R

2n×1. Then
it is easy to verify that ρT

0 Â = 0 · ρT
0 and ρT

0 B = 0, which
means Â has a zero eigenvalue and rank

[
0 · I − Â, B

]
< 2n.

According to Lemma 2, we know that the zero eigenvalue
corresponds to an uncontrollable mode.

Next, we prove that the algebraic multiplicity of this zero
eigenvalue is one. According to Lemma 1, we need to show
that there is only one Jordan block of size one corresponding
to the zero eigenvalue. Indeed, we can prove the following
facts

dim ker( Â − 0 · I ) = 1; (8)

dim ker( Â − 0 · I )2 = 1. (9)

Then by Lemma 1, there is only one Jordan block corre-
sponding to λ = 0 and its size is 2dim ker Â1 − dim ker Â2 −
dim ker Â0 = 1. To prove (8) and (9), we consider the
solution of Â p = 0. Denote p = [

pT
1 , pT

2 , . . . , pT
n

]T
where

pi = [
pi1, pi2

]T ∈ R
2×1, i = 1, 2, . . . , n. Considering the

expression of Â in (7), we know that Â p = 0 is equivalent
to Ai1 pi + Ai2 pi−1 = 0, leading to{ −pi2 + p(i−1)2 = 0, (10a)

αi1 pi1 − αi2 pi2 + αi3 p(i−1)2 = 0, (10b)

for i = 1, 2, . . . , n. For simplicity, we denote i = n when
i takes the value of 0 and vice versa due to the circulant
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property. From (10a), we know pi2 = c, i = 1, . . . , n where c
is a constant. Substituting it into (10b) leads to pi1 = αi2−αi3

αi1
c.

Then, the solution of Â p = 0 is of the unique form

p = c
[

α12−α13
α11

, 1, . . . , αn2−αn3
αn1

, 1
]T

, (11)

which has dimension one. Therefore, the statement in (8)
holds. The proof of (9) is similar, and details can be found
in Appendix A.

Now, we know that the algebraic multiplicity of the zero
eigenvalue is one, and ρ0 is the only mode corresponding to
the zero eigenvalue. Accordingly, the uncontrollable mode ρ0
will remain constant, i.e., equal to its initial state, in the system
evolution. Therefore, we can conclude that the uncontrollable
mode is stable in the Lyapunov sense.

The uncontrollable mode can be expressed as ρT
0 x (t) =∑n

i=1 s̃i (t) = ∑n
i=1 si (t) − ∑n

i=1 s∗
i . The physical interpreta-

tion is that the uncontrollable mode reflects the ring-road setup
in system (5), indicating that the sum of each vehicle’s spacing
must remain constant, i.e.,

∑n
i=1 si (t) = L. Recall that the

equilibrium spacing of the CAV, i.e., s∗
1 , can be designed

separately. Therefore, if we have s∗
1 = L − ∑n

i=2 s∗
i , where

s∗
2 , . . . , s∗

n are given by (2), then ρT
0 x(t) = 0 for all t ≥ 0.

The influence of different choices of s∗
1 is further discussed

in Section IV-C.

B. Stabilizability Analysis

Here, we show that all other modes corresponding to
non-zero eigenvalues of Â are controllable under a mild
condition, which leads to the following theorem.

Theorem 2 (Stabilizability): Consider the mixed traffic sys-
tem in a ring road with one CAV and n − 1 heterogeneous
HDVs given by (5). System (5) is stabilizable, if the following
condition holds,

α2
j1 − αi2α j1α j3 + αi1α

2
j3 �= 0, ∀i, j ∈ {1, 2, . . . , n}. (12)

Proof: We first show that condition (12) yields the
following fact: each non-zero eigenvalue λ of Â satisfies⎧⎨

⎩
λ2 + αi2λ + αi1 �= 0,

∀i ∈ {1, 2, . . . , n}.
αi3λ + αi2 �= 0,

(13)

The proof is elementary and can be found in Appendix B.
Assume that there exists a non-zero eigenvalue λ of Â which

corresponds to an uncontrollable mode. Then according to
Lemma 2, there exists a left eigenvector ρ of Â associated
with λ such that ρT B = 0. Denote ρ as

ρ = [
ρT

1 , ρT
2 , . . . , ρT

n

]T
, (14)

where ρi = [ρi1, ρi2]T ∈ R
2×1. Considering that only

the second element in B is non-zero, this assumption leads
to ρ12 = 0. In addition, due to ρT A = λρT, we know for
i = 1, 2, . . . , n,

ρT
i (λI − Ai1) = ρT

i+1 A(i+1)2

Since λI − Ai1 is invertible according to (13), we then have

ρT
i = ρT

i+1 A(i+1)2 (λI − Ai1)
−1 , (15)

for i = 1, 2, . . . , n. Upon denoting Di1 = (λI − Ai1)
−1, and

considering the recursive result of (15), we have

ρT
1 = ρT

2 A22 D11

= ρT
3 A32 D21 A22 D11

= · · ·
= ρT

n An2 D(n−1)1 A(n−1)2 · · · D21 A22 D11

= ρT
1 A12 (Dn1 An2) · · · (D21 A22) D11, (16)

where Di1 Ai2 is equal to

Di1 Ai2 = 1

ai

[
0 ci

0 bi

]
, i = 1, 2, . . . , n, (17)

with ai = λ2 + αi2λ + αi1, bi = αi3λ + αi2, and ci = λ +
αi2 − αi3. According to (13), we have ai �= 0 and bi �= 0.
Substituting (17) into (16) yields

[
ρ11 ρ12

] = [
ρ11 ρ12

] [
α11 λ

α11α13 λα13

]
�n

i=2bi

�n
i=1ai

.

Since ρ12 = 0, we know λρ11�
n
i=2bi = 0. Because λ �= 0

and bi �= 0, we have ρ11 = 0, leading to ρ1 = 0. Using
(15) recursively, we can obtain ρ = [

ρT
1 , ρT

2 , . . . , ρT
n

]T = 0,
which contradicts ρ �= 0. Consequently, the assumption does
not hold. Therefore, all the modes corresponding to non-zero
eigenvalues are controllable.

Recall that we have shown in Theorem 1 that there is
only one uncontrollable mode ρT

0 x(t), which corresponds
to the zero eigenvalue and is stable. Therefore, we con-
clude that the mixed traffic system (5) is stabilizable under
condition (12).

Note that (12) is a sufficient condition for the mixed traffic
system to be stabilizable. This condition restricts the locations
of the closed-loop poles as shown in (13), and allows us to
reveal the characteristic of their corresponding eigenvectors.
When choosing αi1, αi2, αi3 randomly, condition (12) is
satisfied with probability one; accordingly, the heterogeneous
mixed traffic system (5) is stabilizable with probability one.

In [18], Kalman controllability criterion was leveraged
to analyze the controllability property of mixed traffic sys-
tems with homogeneous HDVs. However, for the hetero-
geneous mixed traffic system (5), it is nontrivial to com-
pute the rank of the Kalman controllability matrix Qc =[
B, AB, . . . , A2n−1 B

]
. Instead, the eigenvalue-eigenvector

analysis based on the PBH test gives analytical solutions for
the controllability and stabilizability of the heterogeneous case.
In the case of homogeneous traffic flow, Theorems 1 and 2 are
consistent with that in [18]. Specifically, if αi1 = α1, αi2 =
α2, αi3 = α3, for i = 1, 2, . . . , n, condition (12) reduces to
α1 −α2α3 +α2

3 �= 0. As proved in [18], if α1 −α2α3 +α2
3 = 0,

the homogeneous mixed traffic system is still stabilizable since
all the uncontrollable modes are asymptotically stable.

Remark 2: Some previous works imposed a lower bound
on the CAV penetration rate to guarantee the stability of
mixed traffic flow; see e.g., [6], [14], [17], [22]. We note
that these works usually employed specific controllers for
CAVs, such as ACC- or CACC-type controllers, which might
restrict the potential of CAVs. Instead, if one focuses on
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stabilizability of mixed traffic flow directly, Theorem 2 has
no requirement on system size n or the stability property of
the original traffic system with HDVs only. We prove that
the entire traffic flow can be stabilized by controlling one
single CAV, showing a greater capability of CAVs beyond
normal expectations. Indeed, our theoretical results validate
the empirical observations from field experiments in [4] and
the training results from reinforcement learning in [23], that
one single CAV can be used as a mobile actuator to dampen
traffic waves.

IV. OPTIMAL CONTROLLER SYNTHESIS

The stabilizability of the mixed traffic system (5) guarantees
the existence of a stabilizing controller. In this section, we pro-
ceed to design an optimal control input u(t) for the CAV to
dampen undesired perturbations of the traffic flow. We first
formulate this task as a structured optimal control problem,
and then introduce a numerical solution approach based on
convex relaxation. We also discuss how to design the desired
system state based on reachability analysis.

A. System-Level Performance and Structured Optimal Control

Previous works on the control of CAVs usually focused
on local-level performance, i.e., to achieve a better driving
behavior of a single CAV [10] or a CAV platoon [5]. Here,
we first define a system-level performance index for the
entire traffic system (5). In particular, we aim to minimize
the influence of undesired perturbations on traffic flow by
controlling one CAV. To model this scenario, we assume that
there exist certain disturbances

ω(t) = [
ω1(t), ω2(t), . . . , ωn(t)

]T
, (18)

where ωi (t) is a scalar disturbance signal with finite energy
in the acceleration of vehicle i (i = 1, 2, . . . , n). Then,
the system model (5) becomes

ẋ(t) = Ax(t) + Bu(t) + Hω(t), (19)

where H ∈ R
2n×n is

H =

⎡
⎢⎢⎣

H1 0 · · · 0

0 H1
. . .

...
...

. . .
. . . 0

0 · · · 0 H1

⎤
⎥⎥⎦ ,

with the block entry denoting H1 = [0, 1]T. We use

z (t) = [
γs s̃1 (t) , γv ṽ1 (t) , . . . , γs s̃n (t) , γv ṽn (t) , γuu (t)

]T

(20)

to denote a performance output, with weight coefficients
γs, γv , γu > 0 representing the penalty for spacing error,
velocity error and control input, respectively. This system-level
performance output can also be written as

z(t) =
[

Q
1
2

0

]
x(t) +

[
0

R
1
2

]
u(t), (21)

with Q
1
2 = diag (γs, γv , . . . , γs, γv ), R

1
2 = γu . In (18)

and (20), we allow the perturbation to arise from anywhere
in the traffic flow, and the performance output z(t) takes into

account all the vehicles’ deviations in the traffic flow. This
setup indicates a system-level consideration.

We use Gzω to denote the transfer function from distur-
bance ω to performance output z. Upon denoting ‖Gzω‖
as the H2 norm that reflects the influence of disturbances,
the design of an optimal control input u (t) for the CAV under
a pre-specified communication topology can be formulated as

min
K

‖Gzω‖2

subject to u = −K x, K ∈ K, (22)

where K ∈ K reflects the information that is available for the
CAV. Note that previous local-level controllers, e.g., CACC [5]
or CCC [19], mostly only utilized the state information from
vehicles ahead of the CAV to determine its own behavior.
In this paper, our system-level consideration directly aims
to improve the entire traffic system by controlling the CAV.
Therefore, the CAV can utilize information from any vehicle
within the communication range, e.g., the vehicles ahead and
the vehicles behind.

Formulation (22) is known as the structured optimal control
problem [34], [42]. This problem is in general non-convex
and computationally hard to find a globally optimal solution.
In the following, we highlight that one particular difficulty lies
in K ∈ K.

Lemma 4 (H2 Norm of a Transfer Function [33]): Consi-
der a stable system with the dynamics ẋ (t) = Ax (t)+Hω (t),
and the output z (t) = Cx (t). The H2 norm of the transfer
function from w (t) to z (t) can be computed by

‖Gzω‖2 = inf
X	0

{Tr(C XCT)|AX + X AT + H H T 
 0}.
Lemma 4 offers a standard technique to compute the H2

norm of the transfer function of a linear system. Using
u = −K x , (19) and (21) become

ẋ(t) = (A − B K )x(t) + Hω(t),

z(t) =
[

Q
1
2

−R
1
2 K

]
x(t). (23)

Based on (23) and Lemma 4, problem (22) can be equivalently
reformulated as

min
X,K

Tr(QX) + Tr(K T RK X)

subject to (A − B K )X + X (A − B K )T + H H T 
 0,

X 	 0, K ∈ K. (24)

Using a standard change of variables [34], [42]

K = Z X−1,

pre-and post-multiplying AX+X AT+H H T 
 0 by P = X−1,
and using the Schur complement, we can obtain an equivalent
form of (24)

min
X,Y,Z

Tr(QX) + Tr(RY )

subject to AX + X AT − B Z − ZT BT + H H T 
 0,[
Y Z
ZT X

]
� 0, X 	 0, Z X−1 ∈ K. (25)
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In the absence of Z X−1 ∈ K, problem (25) will be convex
and can be solved via existing conic solvers, e.g., Mosek [43].
However, the constraint K ∈ K appears naturally in the
controller design for the CAV in a mixed traffic system, since
the CAV can only use its neighboring vehicles’ information
for feedback.

Remark 3: In the proposed optimal strategy, the setup of
the weight coefficients γs, γv , γu play a significant role in
the control performance. In principle, a larger value of γs, γv

indicates more consideration of the state error of all the
vehicles in traffic flow, which normally allows the CAV to
stabilize traffic flow in a shorter time. Conversely, a larger
value of γu commonly keeps a lower control input of the
CAV, leading to more feasible control actions within practical
bounds. Existing heuristic controllers, e.g., FollowerStopper
and PI with Saturation [4], have parameters that need to be
adjusted empirically, and the resulting performance is not
completely predictable. In contrast, our strategy shows an
evident advantage in tuning the controller, which can achieve
preferable performance or adapt to different traffic conditions.
Note that we utilize a homogeneous setup for weight coeffi-
cients of all the vehicles in performance output (20). In fact,
heterogeneity can also be introduced to show different levels
of consideration for different vehicles, and Formulation (25)
still works to return an optimal feedback gain.

Remark 4: Without the constraint K ∈ K, (22) is a standard
H2 optimal control problem, for which efficient methods are
available to compute an optimal solution. Note that in (25),
the solution X can build a Lyapunov function V (x) =
xT(t) X−1x(t) for the closed-loop system. The structured
optimal control problem (22) (or its variants) has attracted
some attention in the literature. A few methods have been
proposed to find an approximation solution, such as using
convex approximations [42], or directly employing non-convex
optimization techniques [34]. However, many existing meth-
ods require that the system is completely controllable, and
therefore they are not applicable to our problem since the
mixed traffic system is not completely controllable, as proved
in Theorem 1.

B. Numerical Solution Approach

In this section, we utilize a recent strategy based on sparsity
invariance, originally introduced in [35], to compute a specific
control feedback gain K ∈ K for problem (22).

To highlight the idea of sparsity invariance, we introduce
a few notations to represent sparse matrices. Given a matrix
M ∈ R

m×n , Mij denotes its entry in i -th row, j -th column.
We denote {0, 1}m×n as the set of m × n binary matrices,
meaning each entry in the matrix is either 0 or 1. Given
M ∈ {0, 1}m×n , Sparse(M) denotes a corresponding sparsity
pattern, defined as

Sparse(M) := {A ∈ R
m×n |Aij = 0, if Mij = 0}.

Consider the equivalent formulation (25), where Z X−1 ∈ K
is non-convex. The idea of sparsity invariance is to replace
this non-convex constraint with separate constraints on Z
and X [35]. Precisely, we aim to characterize a binary matrix

Fig. 5. Two examples of possibles choices of T and S to guarantee sparsity
invariance for a specific K. (a) is to assume Sparse(S) to be diagonal, while
(b) is a more general case.

T ∈ {0, 1}1×2n and a symmetric binary matrix S ∈ {0, 1}2n×2n

such that

Z ∈ Sparse(T ) and X ∈ Sparse(S) ⇒ Z X−1 ∈ K. (26)

The above property is called sparsity invariance; see Fig. 5 for
examples. If such T and S can be identified, then problem (25)
can be relaxed to the following convex optimization problem

min
X,Y,Z

Tr(QX) + Tr(RY )

subject to AX + X AT − B Z − ZT BT + H H T 
 0,[
Y Z
ZT X

]
� 0, X 	 0,

Z ∈ Sparse(T ), X ∈ Sparse(S). (27)

where any solution (X, Y, Z) to (27) is a suboptimal solution
to (25) due to the sparsity invariance property (26).

One key step in (27) is to design two sparsity patterns T
and S that satisfy (26) for a given K. A typical method,
e.g., [42], is to assume X to be block diagonal and Z ∈ K;
see Fig. 5a for illustration. Essentially, this assumption requires
that the closed-loop system admits a block-diagonal Lyapunov
function. However, this requirement might be too restrictive,
and it fails to return feasible solutions in some instances. A full
characterization of T and S was presented in [35]. Following
the strategy therein, we first choose a binary matrix T to
induce the same sparsity pattern K, and then use the following
two-step procedure to derive the optimal choice of S.

Step 1: For every i , j ∈ {1, 2, . . . , n}, set

Si j =
{

0, if ∃k ∈ {1, . . . , m} s.t. Tkj = 0, Tki = 1,

1, otherwise.

Step 2: For every i , j ∈ {1, 2, . . . , n}, set

S∗
i j =

{
1, if Si j = Sj i = 1,

0, otherwise.

It is shown in [35] that S∗ is an optimal choice that maximizes
the number of non-zero entries in S for a given T , while
satisfying the sparsity invariance property.

After obtaining the optimal choice of S and T , problem (27)
is convex and ready to be solved by existing conic solvers
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(e.g., Mosek). One structured optimal controller is recovered
as K = Z X−1 ∈ K, which naturally satisfies the structural
constraint. Note that the resulting optimal controller is in
general a suboptimal solution to the original problem (25),
since Z and X can be dense and still satisfy Z X−1 ∈ K.
Remarkably, however, our numerical experiments confirm that
the suboptimal solution returned by solving (27) often has
satisfactory performance. In addition, if the entire traffic state
is observable to the CAV, i.e., the structural constraint is
removed, problem (25) becomes a convex problem which
returns a globally optimal controller.

C. Reachability Analysis: Desired Traffic Velocity

Solving problem (22) offers a stabilizing feedback gain K
under structural constraints. Still, whether the desired traffic
state can be reached remains unclear due to the existence of
the zero eigenvalue. The mixed traffic system might converge
to a different equilibrium traffic velocity v̂∗, instead of the
desired one v∗. We call this problem reachability analysis.

The pre-specified velocity v∗ characterizes the desired state
of the mixed traffic system, since each HDV has a corre-
sponding equilibrium spacing s∗

i , determined by (2). Unlike
HDVs, the equilibrium spacing of the CAV, i.e., s∗

1 , can
be designed separately. Consider the implementation of the
controller, given by

u(t) = −K x(t)

= −k11
(
s1(t) − s∗

1

) − k12
(
v1(t) − v∗)

−
∑

(i,1)∈Ec,i �=1

(
ki1(si (t) − s∗

i ) − ki2(vi (t) − v∗)
)
.

If s∗
1 is chosen carefully, the mixed traffic flow can be steered

towards the exact velocity v∗. This is summarized in the
following theorem.

Theorem 3 (Reachability): Consider the mixed traffic sys-
tem with one CAV and n−1 heterogeneous HDVs given by (5).
Suppose that a static feedback gain is found by (22) and the
coefficient matrix in (33) is non-singular. Then, the traffic flow
can maintain stability at velocity v∗ if and only if the desired
spacing of the CAV satisfies

s∗
1 = L −

n∑
i=2

s∗
i , (28)

with s∗
i , i = 2, . . . , n determined by (2).

Proof: Since problem (22) has a solution K ∈ K,
the mixed traffic system (5) is stable by controlling the CAV
with input u(t) = −K x(t). Suppose that system (5) reaches
its equilibrium state at t f , then we have ẋ(t f ) = 0, yielding
u(t f ) = 0, and ˙̃si (t f ) = 0, ˙̃vi (t f ) = 0, i = 1, . . . , n.
According to (3) and (4), we observe

s̃i (t f ) = αi2 − αi3

αi1
ve, ṽi (t f ) = ve, i = 2, . . . , n, (29)

and

s̃1(t f ) = se, ṽ1(t f ) = ve, (30)

where se, ve are two constants. Note that s̃i (t f ) = 0, ṽi (t f ) =
0, i = 1, . . . , n is equivalent to the condition that the traffic

Fig. 6. Process of designing an optimal controller for the mixed traffic system.
Given a mixed traffic system, a pre-specified communication topology of the
CAV and a desired equilibrium velocity, following this process allows the
controller to calculate a static structured feedback gain K . The control input
of the CAV at time t is then computed by u(t) = −K x(t).

system reaches the pre-specified velocity v∗. Due to the
existence of the zero eigenvalue (as proved in Section III),

n∑
i=1

si (t) =
n∑

i=1

(
s̃i (t) + s∗

i

) = L, (31)

holds for all t ≥ 0. Besides, u(t f ) = 0 yields

K x(t f ) = 0. (32)

Substituting (29) and (30) into (31) and (32), we have⎧⎨
⎩

se +
(∑n

i=2
αi2−αi3

αi1

)
ve = L − s∗

1 − ∑n
i=2 s∗

i ,

k11se +
(∑

(i,1)∈Ec,i �=1

(
ki1

αi2−αi3
αi1

+ ki2

)
+ k12

)
ve =0.

(33)

To show sufficiency, we assume that (28) holds. The linear
equation system (33) then becomes a homogeneous one, which
has a unique solution most generally: se = 0, ve = 0. This
result indicates s̃i (t f ) = 0, ṽi (t f ) = 0, i = 1, . . . , n. Thus,
the traffic system can reach the desired traffic velocity v∗.

To show necessity, we assume s̃i (t f ) = 0, ṽi (t f ) = 0, i =
1, . . . , n. Applying (29) and (30), we see se = 0, ve = 0.
Substituting it into (33) yields L − s∗

1 − ∑n
i=2 s∗

i = 0, which
proves that (28) holds.

Remark 5: The whole process of obtaining a system-level
optimal controller is illustrated in Fig. 6, including the prob-
lem formulation, the numerical solution, and the design of
the desired system state. This process offers a static linear
feedback gain K , which allows the CAV to utilize local
available information and achieve an optimal performance
for the entire traffic flow. Note that our strategy requires the
explicit model of the HDVs’ dynamics, which is also assumed
in other recent works; see, e.g., [12], [20]–[22]. In practice, our
proposed controller can be combined with existing real-time
algorithms, e.g., [25], [29], for estimating HDVs’ dynamics
based on historical data of vehicle trajectories. Nevertheless,
considering possible model mismatch in HDVs’ dynamics, it is
of great significance to incorporate robustness analysis in the
optimal controller synthesis in the future work.

When designing ACC or CACC [5], the notion of the
desired state also exists, which can be chosen arbitrarily
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since all the involved vehicles have autonomous capabilities.
In contrast, in mixed traffic systems, one distinctive fact is that
the HDVs cannot be directly controlled. Despite this fact, they
can still be influenced indirectly through interactions among
neighboring vehicles towards an equilibrium state (s∗

i , v∗).
In addition, although the desired state of the CAV, i.e., s∗

1 , can
be chosen separately, it should satisfy (28) in order to stabilize
the traffic flow at the desired velocity v∗. If s∗

1 �= L−∑n
i=2 s∗

i ,
then it is easy to see from (33) that se �= 0, ve �= 0, leading
to vi (t f ) = v f �= v∗, i = 1, . . . , n. This means that the traffic
system is stabilized at another equilibrium velocity v f instead
of the pre-specified one v∗.

Moreover, we observe that the pre-specified traffic
velocity v∗ should also satisfy a certain constraint to make
it reachable. This is summarized as follows.

Corollary 1 (Maximum Reachable Traffic Velocity): Consi-
dering the mixed traffic system given by (5), there exists a
reachable range for the traffic velocity:

0 ≤ v∗ < v∗
max, (34)

where v∗
max denotes the maximum reachable traffic velocity.

Proof: Since the spacing of the CAV must be positive,
we have s∗

1 > 0. Substituting (28) into s∗
1 > 0 yields

L −
n∑

i=2

s∗
i > 0. (35)

Recall that the HDV equilibrium equation (2) is an implicit
function associating v∗ and s∗

i . In general, s∗
i increases as

v∗ grows up [21], as has been shown in Fig. 2(b). Thus,
we suppose there exist non-decreasing functions Ei (·), i =
2, . . . , n, such that s∗

i = Ei (v
∗). Then, (35) can be converted

to
∑n

i=2 Ei (v
∗) < L, leading to a maximum reachable

velocity v∗
max, given by

n∑
i=2

Ei (v
∗
max) = L . (36)

Accordingly, (34) holds.
Remark 6: Although the stabilizability of the mixed traffic

system is revealed in Section III, the equilibrium velocity
v∗ still needs to be designed carefully for practical use.
Corollary 1 indicates that it is not possible to stabilize the
mixed traffic flow at an arbitrary velocity v∗; instead, there
exists a maximum reachable traffic velocity v∗

max. According
to (36), this upper bound has a certain relationship with
the number of vehicles, HDV dynamics, and the ring-road
circumference. In the homogeneous case, (36) reduces to
(Ei = E, i = 2, . . . , n)

v∗
max = E−1

(
L

n − 1

)
,

which is consistent with that in [18]. Considering the
monotonicity of function E , we conclude that the maximum
reachable traffic velocity decreases as the vehicle density
grows up. In addition, note that a larger value of v∗ leads to
a smaller value of the CAV’s desired spacing s∗

1 , which will
increase the risk of rear-end collisions. In contrast, a smaller
value of v∗ leaves a larger spacing between the CAV and the

preceding vehicle, which may cause other vehicles to cut in.
Therefore, we need to choose a moderate value of v∗ among
the range of 0 ≤ v∗ < v∗

max for practical use, based on
the trade-off between vehicle safety, practical feasibility, and
traffic efficiency.

V. NUMERICAL EXPERIMENTS

Our main results are obtained using a linearized model
of the mixed traffic system. We evaluate their effectiveness
in the presence of nonlinearities arising in the car-following
dynamics (1). In this section, we conduct three types of
simulation experiments to validate our theoretical results based
on a realistic nonlinear HDV model. All the experiments are
carried out in MATLAB.

A. Experimental Setup

We consider a ring road with circumference L = 400 m con-
taining 19 HDVs and one CAV. Vehicle no.1 is the CAV and
the penetration rate is only 5% in this setup. The information
from five vehicles ahead and five vehicles behind is available
to the CAV for feedback control. For the parameters in the
performance output (21), we choose γs = 0.03, γv = 0.15,
γu = 1. Based on the approach in Section IV, a structured
linear feedback gain K is obtained using Mosek.

In our simulations, a nonlinear optimal velocity model
(OVM) [39] is used to describe the car-following dynamics
of HDVs. The specific expression for (1) becomes

Fi (·) = αi (Vi (si (t)) − vi (t)) + βi ṡi (t), (37)

where αi , βi are sensitivity coefficients, and Vi (s) is the
spacing-dependent desired velocity of driver i , typically given
by a continuous piecewise function

Vi (s) =

⎧⎪⎨
⎪⎩

0, s ≤ si,st,

fi,v (s), si,st < s < si,go,

vi,max, s ≥ si,go.

(38)

In (38), we choose a nonlinear form of fi,v (s) [21]

fi,v (s) = vi,max

2

(
1 − cos(π

s − si,st

si,go − si,st
)

)
.

Due to the heterogeneity setup and motivated by [21],
we set the parameters as follows: αi = 0.6 + U [−0.1, 0.1],
βi = 0.9 + U [−0.1, 0.1], si,go = 35 + U [−5, 5], where U [·]
denotes the uniform distribution. The rest of parameters are
set as vi,max = 30, si,st = 5. As stated in [18], this set of
values captures a stop-and-go car-following behavior of HDVs
in a ring road. It is not difficult to verify that the stabilizability
condition (12) is satisfied. Accordingly, Theorem 2 guarantees
that the mixed traffic system is stabilizable by a single CAV
around an equilibrium traffic state.

Note that our experimental setup is similar to that
in [4], [37], but has a larger inter-vehicle distance, which leads
to higher traffic velocity. Compared to [4], [37], our setup
captures more common scenarios on highways, and mean-
while reproduces the experimental observations in [4], [37];
see Sections V-B and V-C. To avoid crashes, we also assume
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Fig. 7. Velocity profile of each vehicle (Experiment A). (a) All the vehicles
are HDVs. (b)—(f) One vehicle is CAV with the proposed method. The
desired equilibrium velocity v∗ is 15 m/s, 16 m/s, 14 m/s in (b), (c)(e), (d)(f),
respectively. In (b)(c)(d) the value of s∗

1 is determined according to (28),
whereas in (e)(f) (28) is not satisfied.

that all the vehicles are equipped with a standard automatic
emergency braking system, described as follows

v̇(t) = amin, if
v2

i (t) − v2
i−1(t)

2si (t)
≥ |amin|,

where the maximum acceleration and deceleration rate of
each vehicle are set to amax = 2 m/s2, amin = −5 m/s2,
respectively.

B. Stabilizing Mixed Traffic Flow

Experiment A aims to examine the analytical results
with respect to stabilizability and reachability, as shown in
Theorems 2 and 3 respectively. Firstly, we show that a typical
nonlinear heterogeneous traffic flow can be stabilized by a
single CAV. At the beginning of the simulation, all the vehicles
are distributed randomly on the road, with the initial velocity
following the distribution 15 + U [−4, 4] m/s. When all the
vehicles are under human control, it is clearly observed that
multiple perturbations arise inside the traffic flow, and they
are amplified gradually, inducing a traffic wave propagating
against the traffic flow (Fig. 7(a)). In contrast, if there is
one CAV using the proposed control method, the traffic flow

can be stabilized to the original average velocity 15 m/s
within a short time (Fig. 7(b)). Moreover, by adjusting the
desired equilibrium velocity v∗ (within the range as stated
in Corollary 1) and the corresponding desired spacing s∗

1
according to Theorem 3, the CAV shows its ability to steer the
entire traffic flow towards a higher or lower velocity, through
influencing other vehicles (Fig. 7(c)-7(d)).

Next we show that the desired state of the CAV needs to be
designed carefully, which validates the reachability analysis.
Following the same simulation setup as that in Fig. 7(c)-7(d),
we change the value of the desired spacing of the CAV, i.e., s∗

1 ,
without satisfying (28) in Theorem 2. Note that the feedback
gain K remains the same. As illustrated in Fig. 7(e)-7(f),
although the mixed traffic system is still stabilized by
the CAV, the system final velocity v f is not equal to the
desired velocity v∗. Due to the nonlinearity of traffic flow,
the deviation becomes unpredictable and cannot be derived
from (33). Conversely, if s∗

1 is designed based on Theorem 3,
Fig. 7(c)-7(d) exhibit that the traffic flow can be controlled
precisely to the pre-specified traffic velocity. This result con-
firms the statement in Theorem 3.

C. Dissipating Stop-and-Go Waves

Experiment B is conducted to test the controller’s ability
to dissipate stop-and-go waves. A random noise following the
normal distribution, N (0, 0.2), is added to the acceleration
signal of each vehicle. This corresponds to the traffic situations
where small perturbations are generated naturally inside the
traffic flow. The perturbations may lead to traffic conges-
tion, corresponding to traffic jams without bottleneck [37].
Our setup of random noise is consistent with that in the
learning-based work [23], and aims to reproduce the empirical
observations in real-world experiments [4], [37] through our
numerical studies.

The results are demonstrated in Figure 8. At the begin-
ning, the controller is deactivated, which means that vehicle
no.1 behaves as an HDV, i.e., utilizes the OVM model (37)
to determine its car-following behavior. This corresponds to
the scenario where all the vehicles are controlled by human
drivers. From t = 0 s to t = 300 s, a traffic wave is observed,
which grows up gradually and finally leads to a stop-and-
go wave. At t = 300 s, the proposed controller is activated,
which dissipates the stop-and-go wave and moves the traffic
flow back to equilibrium during the following 100 seconds.
At t = 450 s, the controller is deactivated again, and the
wave reappears. This result implies that the proposed method
enables the CAV to attenuate the inner perturbations of the
traffic flow persistently, which may be induced by system
noise. Without the CAV using the proposed controller, the traf-
fic flow may easily get into the congestion pattern.

D. Comparison With Existing Heuristic Strategies

In our final experiment (Experiment C), we compare our
proposed strategy with two existing heuristic ones: Follower-
Stopper and PI with Saturation [4]. Note that our experimental
setup is not completely the same as that in [4], and thus the
performance of FollowerStopper and PI with Saturation in our
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Fig. 8. Velocity profile and trajectory of the 1st, 3rd, 5th, . . ., 19th vehicle
(Experiment B). In (b), the darker the color, the lower the velocity. From
t = 0 s to t = 300 s and from t = 450 s to t = 700 s, the proposed controller
does not work and all the vehicles are human-driven, while from t = 300 s
to t = 450 s, the proposed controller at vehicle no.1 is activated.

Fig. 9. Vehicle trajectories (Experiment C). (a) All the vehicles are human-
driven. (b)-(d) correspond to the cases where vehicle 2,11,20 is under the
perturbation, respectively.

experiments can be possibly improved after careful tuning.
We assume that one vehicle is under a sudden perturbation,
which may occur in the presence of infrastructure bottlenecks,
e.g., intersections or merging lanes. The traffic flow has an
initial velocity of 15 m/s. At t = 20 s, one HDV brakes
at −3 m/s2 for 3 s. It is noticeably observed that when all
the vehicles are under human control, the perturbed vehicle’s
action results in a traffic wave travelling upstream, which
persists and does not vanish (Fig. 9(a)). If one CAV with
the proposed method is included in the traffic system, it can

Fig. 10. Vehicle Spacing (Experiment C). Vehicle no.6 is under the
perturbation. The grey line and the blue line denote the spacing of HDV
and CAV, respectively. (a) All the vehicles are HDVs. (b)-(d) correspond to
the cases where the CAV is using FollowerStopper, PI with Saturation and
our optimal control strategy, respectively.

Fig. 11. Comparison of results at different positions of the perturbation (Exp-
eriment C). (a) The maximum spacing of the CAV during the overall process,
i.e., max s1(t). (b) The linear quadratic cost for the traffic system, defined as∫ ∞

t=0 xT(t)Qx(t) + uT(t)Ru(t) with Q and R taking the same value as those
in (21).

prevent the propagation of the traffic wave and dampen the
perturbation within a short time (Fig. 9(b)-9(d)).

The FollowerStopper and PI with Saturation in [4] use the
command velocity vcmd as the control input, and we add a
proportional controller, i.e., u(t) = kp(vcmd(t) − v(t), with
kp = 0.6, to serve as a lower controller. The comparison
results are demonstrated in Fig. 10 and Fig. 11. When all
the vehicles are under human control, the spacing of each
vehicle begins to fluctuate when the perturbation is introduced
(Fig. 10(a)). If the CAV is using either of the three strategies,
it is able to dampen the traffic wave and move the traffic state
back to equilibrium (Fig. 10(b)-10(d)). However, the CAV
leaves a very large spacing from the preceding vehicle for
some time, when using FollowerStopper or PI with Saturation,
with a maximum spacing larger than 50 m (Fig. 10(b)-10(c)).
This gap may easily induce vehicles from adjacent lanes to
cut in. In contrast, our optimal control strategy keeps the
spacing within a moderate range during the whole transient
process (Fig. 10(d)). Fig. 11 illustrates two specific metrics
with respect to the position of the perturbation. It is evident
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to see that our method witnesses an apparent reduction in
terms of the maximum spacing of the CAV, which means
our optimal controller overcomes the common shortage of
previous methods that they tend to leave a large gap from
the preceding vehicle. Besides, in terms of the overall cost
during the system evolution, our method achieves the best
performance, which is expected since our framework directly
considers a system-level performance and attempts to obtain
a corresponding optimal controller.

VI. CONCLUSION

In this paper, we have proved that the ring-road mixed
traffic system with one single CAV and multiple heteroge-
neous HDVs is stabilizable under a very mild condition.
This provides a deeper insight towards the potential of traffic
control via CAVs. In addition, we have established a theo-
retical framework to design a system-level optimal controller
for mixed traffic systems, which utilizes the technique of
structured optimal control to address the limit of the CAV’s
communication ability. Moreover, we have revealed that the
CAV’s desired spacing needs to be designed carefully since all
the HDVs are not directly under control. Note that we focus
on a ring road setup in this paper to show the stabilizability
of mixed traffic systems and how to control traffic flow
via CAVs. After modifying the system model (5), the for-
mulation of structured optimal control can be applied to a
straight road scenario. However, the controllability results
may be different since there is no constraint of ring-road
structure and the corresponding uncontrollable mode is not
relevant.

One future direction is to investigate the influence of model
mismatch and drivers’ reaction time on the mixed traffic
system. These issues have been partially discussed in the
estimation of HDV dynamics model [29], design of robust
control strategies [30], and stability analysis of mixed traffic
systems [17]. Moreover, we consider a second-order model
(4) for the CAV, since the existing car-following models, e.g.,
OVM [39] and IDM [40], are mostly in a second-order form.
It has been shown that the vehicle longitudinal dynamics play
a significant role in cooperative control of multiple CAVs [5].
Therefore, incorporating more practical dynamics model for
the CAV is worth further investigation in the research of mixed
traffic systems. Finally, considering that more than one CAVs
may coexist in the traffic flow, another interesting topic is
to design cooperative strategies for multiple CAVs to smooth
traffic flow.

APPENDIX A
PROOF OF (8)

Consider the solution of Â2 p = 0. Express Â2 in a compact
form as follows

Â2 =

⎡
⎢⎢⎢⎢⎢⎣

F11 0 . . . . . . F13 F12
F22 F21 0 . . . . . . F23
F33 F32 F31 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . Fn3 Fn2 Fn1

⎤
⎥⎥⎥⎥⎥⎦ ,

where

Fi1 = A2
i1,

Fi2 = Ai2 A(i−1)1 + Ai1 Ai2,

Fi3 = Ai2 A(i−1)2.

Similarly, Â2 p = 0 is equivalent to Fi1 pi + Fi2 pi−1 +
Fi3 pi−1 = 0. For simplicity, we denote di = αi1 pi1−αi2 pi2+
αi3 p(i−1)2, i = 1, . . . , n. Then the expanded expression of
Fi1 pi + Fi2 pi−1 + Fi3 pi−1 = 0 can be written as{

di−1 = di , (39a)

−αi2di + αi3di−1 = αi1
(

pi2 − p(i−1)2
)
, (39b)

for i = 1, . . . , n. From (39a) we know that di = d , i =
1, . . . , n with d denoting a constant. Substituting it into (39b),
we have pi2 − p(i−1)2 = αi3−αi2

αi1
d , and then,

d
n∑

i=1

αi3 − αi2

αi1
=

n∑
i=1

(
pi2 − p(i−1)2

) = 0. (40)

Indeed we know αi1 > 0, αi2 > αi3 > 0 due to the real driving
behavior of human drivers [12], and hence

∑n
i=1

αi3−αi2
αi1

< 0.
Therefore, di = d = αi1 pi1 − αi2 pi2 + αi3 p(i−1)2 = 0 is
obtained from (40), and also, we have pi2 − p(i−1)2 = 0 from
(39b). These two results show that (39) is equivalent to (10),
indicating that the solution of Â2 p = 0 should also satisfy
the form in (11). Thus, the dimension of the solution space of
Â p = 0 is one, i.e., dim ker( Â − 0 · I )2 = 1. This completes
the proof of (8).

APPENDIX B
PROOF OF (13)

Consider a non-zero eigenvalue λ of Â and its left eigen-
vector ρ with a same expression as that in (14). Since
ρT(λI − Â) = 0, we have (i = 1, . . . , n)

ρi1λ − ρi2αi1 = 0, (41)

ρi1 + ρi2(λ + αi2) − ρ(i+1)1 − ρ(i+1)2α(i+1)3 = 0. (42)

From (41), we have ρi2 = ρi1 · λ
αi1

. Substituting it into (42)
yields(

1 + λ2

αi1
+ αi2

αi1
λ

)
ρi1 =

(
α(i+1)3

α(i+1)2
λ + 1

)
ρ(i+1)1, (43)

for i = 1, . . . , n. Assume there exists k ∈ {1, 2, . . . , n}, such
that λ2 +αk2λ+αk1 = 0. In this case, the inequality, α(i+1)3

α(i+1)2
+

1 �= 0, ∀i ∈ {1, 2, . . . , n}, must hold; otherwise condition (12)
will be contradicted. Letting i = k and substituting λ2+αk2λ+
αk1 = 0 into (43), we have ρ(k+1)1 = 0. Next, still applying
(43) and letting i = k + 1, we then have ρ(k+2)1 = 0. After
recursive iteration using (43), we can obtain ρi1 = ρi2 = 0,
i ∈ {1, 2, . . . , n}, leading to ρ = 0, which contradicts the
requirement that ρ �= 0. Accordingly, the assumption does not
hold and therefore, λ2 + αi2λ + αi1 �= 0, ∀i ∈ {1, 2, . . . , n}.
Similarly, it can also be proved that αi3λ + αi2 �= 0, ∀i ∈
{1, 2, . . . , n}, based on (43).
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